
DeepReflect: Discovering Malicious Functionality through Binary Reconstruction

Evan Downing

Georgia Institute of Technology

Yisroel Mirsky∗

Georgia Institute of Technology &

Ben-Gurion University

Kyuhong Park∗

Georgia Institute of Technology

Wenke Lee

Georgia Institute of Technology

Abstract

Deep learning has continued to show promising results for

malware classification. However, to identify key malicious

behaviors, malware analysts are still tasked with reverse

engineering unknown malware binaries using static analysis

tools, which can take hours. Although machine learning can

be used to help identify important parts of a binary, supervised

approaches are impractical due to the expense of acquiring

a sufficiently large labeled dataset.

To increase the productivity of static (or manual) reverse

engineering, we propose DEEPREFLECT: a tool for localizing

and identifying malware components within a malicious

binary. To localize malware components, we use an unsuper-

vised deep neural network in a novel way, and classify the

components through a semi-supervised cluster analysis, where

analysts incrementally provide labels during their daily work

flow. The tool is practical since it requires no data labeling to

train the localization model, and minimal/noninvasive labeling

to train the classifier incrementally.

In our evaluation with five malware analysts on over 26k

malware samples, we found that DEEPREFLECT reduces the

number of functions that an analyst needs to reverse engineer by

85% on average. Our approach also detects 80% of the malware

components compared to 43% when using a signature-based

tool (CAPA). Furthermore, DEEPREFLECT performs better

with our proposed autoencoder than SHAP (an AI explanation

tool). This is significant because SHAP, a state-of-the-art

method, requires a labeled dataset and autoencoders do not.

1 Introduction

Reverse engineering malware statically can be a manual

and tedious process. Companies can receive up to 5 million

portable executable (PE) samples per week [13]. While most

organizations triage these samples ahead of time to reduce the

amount of malware to analyze (i.e., checking VirusTotal [12]

for antivirus (AV) engine results, executing the sample in a

∗These authors are co-2nd authors.

controlled sandbox, extracting static and dynamic signatures,

etc.), at the end of the day there will still be malware samples

which require static reverse engineering. This is due to the

fact that there will always be new malware samples which no

antivirus company has analyzed before or no signature which

has been crafted to identify these new samples. Finally, there

is a possibility that the sample will refuse to execute within

the analyst’s dynamic sandbox [42].

Current solutions exist in the form of creating signatures [33,

45,72], classification [14,30,36,41], and clustering [18,25,52]

for malware samples. However, these solutions only predict the

class of the samples (e.g., benign vs. malicious, or a particular

malware family). They cannot localize or explain the behaviors

within the malware sample itself, which an analyst needs to

perform to develop a report and improve their company’s mal-

ware detection product. In fact, there has been burnout reported

in the field due to excessive amounts of workload [27, 55].

To identify their needs, we consulted with four reverse

engineer malware analysts (one from an AV company and

three from the government sector). We found that malware

analysts would be more productive in their work if they had

a tool which could (1) identify where malicious functionalities

are in a malware and (2) label those functionalities. The

challenges in developing such a tool are that (1) one would

need to be able to distinguish between what is benign and what

is malicious and (2) understand the semantics of the identified

malicious behaviors. For the first challenge, distinguishing

between what is benign and what is malicious is difficult

because the behaviors of malware and benign software often

overlap at a high level. For the second challenge, automatically

labeling and verifying these behaviors is difficult because

there are no published datasets of individually labeled malware

functions (unlike malware detection and classification systems

which use open datasets like antivirus labels).

To solve these challenges we developed DEEPREFLECT,

a novel tool which uses (1) an unsupervised deep learning

model which can locate malicious functions in a binary and

(2) a semi-supervised clustering model which classifies the

identified functions using very few labels obtained from

Figure 1: The general workflow of a malware analyst. DEEPREFLECT

assists the analyst when they must statically reverse engineer an

unknown malware sample.

analyst’s regular daily workflow.

To locate the malware components in a binary, we use an

autoencoder (AE). An AE is a neural network based machine

learning model whose task is to reconstruct its input as its

output. Since there is compression in the network’s inner

layers, the AE is forced to learn key concepts in the training

distribution. Our intuition is that if we train the AE on benign

binaries, it will have difficulty reconstructing malicious

binaries (i.e., the samples we did not train it on). Naturally,

the AE will not be able to reconstruct regions of the binary

which contain malicious behaviors (which are unseen or

rare in benign samples). Thus, the reconstruction errors can

be used to identify the malicious components in a malware.

Additionally, since AEs are trained in an unsupervised manner,

we do not need millions of labeled samples and companies

can utilize their own internal datasets of malware binaries.

To classify the located malware components, we (1)

perform clustering on all of the identified functions in the

malware samples and (2) label clusters using the analyst’s

annotations made during his or her regular daily workflow.

This approach is semi-supervised since only a few labels (e.g.,

three) are needed per cluster to assign the majority label to the

entire cluster. Over time, we can predict the class (e.g., C&C,

privilege escalation, etc.) of functions identified by the AE

by mapping them to the clustering model. This, in turn, saves

the analyst time as they are not forced to reverse engineer the

same code again and again.

We note that the unsupervised AE provides immediate

utility to malware analysts without training or using the

semi-supervised clustering model. This is because it (1) draws

the attention of the analyst to the most relevant functions by

ranking them (by their reconstruction error) and (2) filters

out functions which would have cost the analyst hours or

potentially days to interpret.

DEEPREFLECT was designed and revised with feedback

from our four malware analysts. Then five different malware

analysts were recruited to evaluate DEEPREFLECT’s effective-

ness and utility. Overall, we evaluate the tool’s performance

on (1) identification of malicious activities within a malware,

(2) clustering related malware components, (3) focusing the

analyst’s attention to what is important, (4) revealing insights

into shared behaviors between different malware families, and

(5) handling adversarial attacks involving obfuscation.

Our contributions are as follows:

• A novel tool which can help malware analysts by auto-

matically (1) locating and identifying malicious behaviors

within static malware samples and (2) deriving insights by

associating functionality relationships between different

malware families.

• A novel and practical approach for using machine learning

on static analysis where

1. Training is performed in an unsupervised manner: an

expert does not need to label any samples for the system

to yield utility – highlighting the malware’s components;

and

2. Classification is accomplished in a semi-supervised

manner with minimal intervention: annotations from

the analyst’s regular workflow are used as labels and the

majority label in a cluster is used to classify associated

malware components.

• We propose an approach for localizing important parts of a

malware with an explanation framework (such our proposed

AE or SHAP [40]) by using localized features that can be

mapped back to the original binary or control flow graph.

2 Scope & Overview

In this section, we present a motivating scenario and explain

the threat model and goals of our system.

2.1 Motivation

As a motivating example, let us assume there exists a malware

analyst named Molly. An illustration of her daily workflow can

be found in Figure 1. This general workflow is realistic based

on descriptions in recent work [69] and of our own discussions

with real-world malware analysts. Given a malware sample,

Molly is tasked with understanding what the sample does so

that she can write a technical report as well as improve her

company’s current detection system to identify that sample

in the future.

She first queries VirusTotal [12] and other organizations

to determine if they have seen this particular sample before.

Unfortunately, no one has. Thus, she moves onto her next

step which is to execute it in a custom sandbox to get an

overview the sample’s dynamic behaviors. Unfortunately, the

sample does not display any malicious or notable behaviors

– it is also possible that it has detected the environment and

refuses to execute. She runs a few in-house tools to try to coax

the malware into performing its hidden behaviors, but to no

avail. Exhausting these options, she resorts to unpacking and

statically reverse engineering the sample to understand what

its potential behaviors are.

Upon opening the unpacked sample in a disassembler (such

as IDA Pro [7] or BinaryNinja [1]), Molly is overwhelmed

by the thousands of functions that exist within it. She tries

running various static signature detection tools to identify

some specific malicious components of the malware, but again

to no avail. She must look through each function one-by-one

(possibly filtering them by the API calls and strings which

exist within them) to try to understand their behaviors (often

times resorting to debugging to verify observed behaviors).

After noting its behaviors, she writes her report (composed

of basic information like indicators of compromise (IOCs),

static signatures, etc.) and passes it along to her superiors. The

next day, she repeats the same tasks. Due to this repetitive

manual labor, the job becomes tedious and time-consuming

for Molly.

DEEPREFLECT aims to alleviate her laborious task by

automatically narrowing her focus to the functions which are

most likely malicious (out of the thousands she is presented

with) and provide labels to those functions she has seen

similarly in the past.

2.2 Proposed Solution

We propose DEEPREFLECT, a tool which (1) locates malicious

functions within a malware binary and (2) describes the behav-

iors of those functions. While an analyst may first attempt to

identify behaviors statically by searching for specific strings

and API calls [69], these can be easily obfuscated or hidden

from the analyst. DEEPREFLECT makes no such assumption

and seeks to identify these same behaviors through a combi-

nation of control-flow graph (CFG) features and API calls.

DEEPREFLECT works by learning what benign binary

functionalities look like normally. Thus, any abnormalities

would suggest that these functionalities do not appear in benign

binaries and could be used to facilitate malicious behaviors.

This allows our tool to narrow down the analyst’s search

space before they open or scan the binary. DEEPREFLECT

reduced the number of functions the analyst had to examine

(in each malware sample) by 85% on average as shown

in Figure 5, illustrating the amount of work required for them

to accomplish their task. Additionally, we show that our

methodology outperforms signature-based techniques which

aim to accomplish the same goal §4.3.

2.3 Threat Model

We assume the malware analyst is performing static analysis.

The limitations of static analysis have been discussed in prior

work [44]. We do not address dynamic analysis in this paper,

though conceptually our tool can be extended to work with

dynamic analysis data. We assume the malware given to our

system is unpacked, as is similar to prior work [37, 39, 59, 60].

The problem of unpacking has been studied in prior work

and solutions have been proposed to address it [21, 58]. Our

results are directly dependent on malware being unpacked

and thus we rely on prior work [11] to first unpack the binaries

for us. We emphasize that our tool is just one step in the

analyst’s pipeline, and unpacking is the first step as illustrated

in Figure 1 and Figure 2.

We assume we can reliably disassemble the malware in

order to extract basic blocks and functions. The challenges

of accurately disassembling binaries have been discussed in

prior work [15, 38].

For our experimentation, we trust that our machine

learning models and datasets are reliable (i.e., are not actively

attempting to attack or thwart our system). A discussion

of the limitations of this assumption (and its solutions) in

deployment settings can be found in §5.1.

2.4 Research Goals

As discussed in §1 and §2.1, the analyst needs to locate and

describe behaviors of internal functions within malware

samples. Therefore, DEEPREFLECT has four primary goals:

(G1) Accurately identify malicious activities within malware

samples, (G2) Focus the attention of the analyst when

statically analyzing malware samples, (G3) Handle new

(unseen) malware families, and (G4) Give insights into

malware family relationships and trends.

3 Design

In this section, we detail the pipeline of DEEPREFLECT as

well as the features and models it uses.

3.1 Overview

The goal of DEEPREFLECT is to identify malicious functions

within a malware binary. In practice, it identifies functions

which are likely to be malicious by locating abnormal basic

blocks (regions of interest – RoI). The analyst must then

determine if these functions exhibit malicious or benign behav-

iors. There are two primary steps in our pipeline, illustrated

in Figure 2: (1) RoI detection and (2) RoI annotation. RoI

detection is performed using an autoencoder, while annotation

is performed by clustering all of the RoIs per function and

labeling those clusters.

Terminology. First, we define what we mean by "malicious

behaviors." We generate our ground-truth based on identi-

fying core components of our malware’s source code (e.g.,

denial-of-service function, spam function, keylogger function,

command-and-control (C&C) function, exploiting remote

services, etc.). These are easily described by the MITRE

ATT&CK framework [9], which aims to standardize these

terminologies and descriptions of behaviors. However, when

statically reverse engineering our evaluation malware binaries

(i.e., in-the-wild malware binaries), we sometimes cannot

for-certain attribute the observed low-level functions to these

higher-level descriptions. For example, malware may modify

registry keys for a number of different reasons (many of which

can be described by MITRE), but sometimes determining

which registry key is modified for what reason is difficult and

thus can only be labeled loosely as "Defense Evasion: Modify

Figure 2: Overview of DEEPREFLECT. Our system takes unpacked malware samples as an input, extracts CFG features from each input (basic

block (BB)), applies them to a pretrained autoencoder model to highlight RoI (regions of interest). Finally, it clusters and labels these regions.

Registry" in MITRE. Even modern tools like CAPA [3]

identify these types of vague labels as well. Thus in our

evaluation, we denote "malicious behaviors" as functions

which can be described by the MITRE framework.

RoI Detection. The goal of detection is to automatically iden-

tify malicious regions within a malware binary. For example,

we would like to detect the location of the C&C logic rather

than detect the specific components of that logic (e.g, the net-

work API calls connect(),send(), andrecv()). The advan-

tage of RoI detection is that an analyst can be quickly pointed

to specific regions of code responsible for launching and op-

erating its malicious actions. Prior work only focuses on creat-

ing ad hoc signatures that simply identify a binary as malware

or some capability based on API calls alone. This is particu-

larly helpful for analysts scaling their work (i.e., not relying

on manual reverse engineering and domain expertise alone).

RoI Annotation. The goal of annotation is to automatically

label the behavior of the functions containing the RoIs. In

other words, this portion of our pipeline identifies what

this malicious functionality is doing. Making this labeling

nonintrusive to an analyst’s workflow and scalable is crucial.

The initial work performed by an analyst for labeling clusters

is a long-tail distribution. That is, there is relatively significant

work upfront but less work as they continue to label each

cluster. The advantage of this process is simple: it gives the

analyst a way to automatically generate reports and insights

about an unseen sample. For example, if a variant of a malware

sample contains similar logic as prior malware samples (but

looks different enough to an analyst to be unfamiliar), our tool

gives them a way to realize this more quickly.

3.2 RoI Detection

An autoencoder is a neural network M which consists of

an encoder En(x), which compresses the input x into an

encoding e, and a decoder De(e), which reconstructs x from

a given e. When trained with the objective De(En(x)) = x,

the network learns to summarize the distribution of x ∈ X

where X ⊂R
m. In works such as [43], it has been shown that

autoencoders can detect malicious (abnormal) behaviors when

trained on a benign distribution. This is because M would fail

to reconstruct the features in x because m would recall the

malicious concepts/patterns.

Given a sample’s reconstruction M(x) = x̂, a malicious

sample is typically identified by computing the mean-squared-

error (MSE) and checking if the resulting scalar is above a

given threshold φ. The MSE is calculated as

MSE(x,x̂)=
1

m
∑

(

x(i)−x̂(i)
)2

(1)

where x(i) is the i-th feature in x.

Our assumption is that malware binaries will contain

similar, but unique functionalities compared to benign binaries.

Given this intuition, we train M on a diverse benign dataset

which represents a variety of behaviors and functionalities.

In contrast to previous works, which identify an entire sample

as being malicious, we identify the malicious regions in each

sample. Concretely, we compute the localized MSE defined as

LMSE(x,x̂)=
(

x(i)−x̂(i)
)2

(2)

and then apply a threshold φ to the resulting vector to identify

the patterns which M did not recognize or understand. Each

block which received a squared error over φ is called a region

of interest (RoI). We denote the mapped set of RoIs identified

in sample x as the set

Rx=

{

x(i)
∣

∣

∣

∣

(

x(i)−x̂(i)
)2

≥φ

}

(3)

The highlights represented by Rx are similar to SHAP [40] ex-

planations of supervised classifiers (e.g., image classification).

However, our approach is designed to explain unsupervised

neural network anomaly detectors (i.e., trained on unlabeled

datasets), whereas SHAP is used on supervised classification

models (trained on labeled datasets).

3.2.1 Features

When given a binary sample, we extract features to summarize

the samples as x. There are many static features which have

been used in prior work for malware detection (e.g., code

section entropy, imported API calls, etc.) [29, 35, 53, 61, 63].

However, for M to localize malicious behaviors within a binary,

our features must be mapped 1-to-1 back into the original

sample. Therefore, we represent each binary as an m-by-c

matrix which captures the first m basic blocks using c features

to summarize each of their activities. Basic blocks are, in

general, a series of instructions which end in a control transfer

instruction. Of course, basic blocks may be represented

differently depending on the disassembler, so this strict

definition may not apply to all static malware analysis systems.

Our c features were inspired from those found in prior works,

namely attributed control flow graph (ACFG) features [23, 75].

ACFG features were chosen to perform binary similarity in

these works because they assume these features (made up

of structural and numerical CFG features) will be consistent

across multiple platforms and compilers. While an argument

can be made that our goals are similar (i.e., identifying

similarities and differences across binaries), we tailored these

features specifically for studying malware. In particular, we

chose our features for the autoencoder to use in order to

capture higher-level behaviors. Our features consist of counts

of instruction types within each basic block (a more detailed

form of those extracted for ACFG features), structural features

of the CFG, and categories of API calls (which have been used

to summarize malware program behaviors [18]).

In DEEPREFLECT, we set m to be the first 20k basic blocks.

We chose this because 95% of our dataset samples have 20k

basic blocks or less. We set c to be the 18 features which

summarize each basic block as follows:

Structural Characteristics. The structural features we use

are the number of offspring and betweenness score of

each basic block. These characteristics can represent a

control-flow structure commonly used for operations like

network communication (e.g., connect, send, recv) and file

encryption (e.g., findfile, open, read, encrypt, write, close).

An example of this functionality from an actual malware

sample can be found in Figure 6.

Arithmetic Instructions. The arithmetic instruction features

we use are the number of "basic math", "logic operation",

and "bit shifting" instructions contained within each

basic block. The features can be used to represent how

mathematical operations are carried out for higher level

behaviors. They illustrate how numbers are interacted with

for the function (e.g., encryption functions likely include

lots of xor instructions, obfuscation functions likely include

a combination of logic and bit-shifting operations, etc.).

We retrieved these instructions from the Intel architectures

software developer’s manual [26]. Additionally, we provide

an example from a malware sample showcasing these types

of features in Figure 9.

Transfer Instructions. The transfer instruction features

we use are the number of "stack operation", "register

operation", and "port operation" instructions within each

basic block. The features can be used to represent how

transfer operations are carried out for higher level behaviors.

They illustrate how arguments provided to the function (and

returned values from function calls) interact with the rest of

the data within that function. It can be indicative of complex

logic and data manipulation (e.g., deobfuscation/decryption

will likely involve more move-related instructions and

C&C logic will involve more stack-related instructions

as it calls more internal/external functions). We similarly

retrieved these instructions from the Intel architectures

software developer’s manual [26].

API Call Categories. The API call features we use are the

number of "filesystem", "registry", "network", "DLL",

"object", "process", "service", "synchronization", "system

information", and "time" related API calls within each basic

block. These categories are inspired from prior work for mal-

ware clustering [18]. The features can be used to represent

high level library operations needed to perform malicious

activities such as network communications and filesystem,

registry, and process operations. Since these directly repre-

sent high-level behaviors, they are crucial to understanding

the overall behaviors of a function. Examples of malware

functions which utilize these different call types to perform

different behaviors can be found in Figure 6 and Figure 8.

We argue that these features are better suited for malware

than classical ACFG features because (1) they include API

calls which have been used in prior work for malware detection,

(2) the instruction categories are finer-grained, allowing for

more context into each basic block (as previously described),

and (3) they do not rely on strings which are too easily prone

to evasion attacks [77]. Of course, given a motivated adversary,

any machine learning model can be attacked and tricked into

producing an incorrect and unintended outputs. Whilst our

features and model are not an exception to this, we argue that

they suffice to produce a reliable model (i.e., it behaves as

expected) and make it difficult enough such that an adversary

would have to work extensively to produce a misleading input

(as demonstrated in §4.7). For a discussion of potential attacks

against our system, please refer to §5.

3.2.2 Model

To train M, we create a training set X from a variety of benign

binaries, where x∈X is an m-by-c feature vector representing

one of the binaries. For the autoencoder model architecture,

we use a U-Net [57]. U-Nets have been shown to perform

well on generative image tasks such as biomedical image

segmentation and the creation of fake imagery. The advantage

of using a U-Net is that it has skip connections between the

En and De which M can use to skip the compression of certain

features to retain a higher fidelity in x̂.

We train M on X with the goal of minimizing the recon-

struction loss. The loss is the common L2 loss between the

input and output, and is defines as

L2(x,x̂)=∑(x−x̂)2
(4)

Once trained, M is given the static features x of an unseen

malware sample. We then highlight the potentially malicious

code regions using Equation 2, which is further discussed

later in §4, such that any MSE over that value is considered

a RoI. After highlighting the RoIs (basic blocks), we cluster

the functions they belong to.

3.3 RoI Annotation

Given a new sample x, we want to identify the behavior

(category) of each of its functions1 and report it to Molly.

Since it is not practical to label all functions, we annotate

only a few functions and propagate the results using cluster

analysis. We will now explain how this process is setup prior

to receiving Molly’s sample.

3.3.1 Clustering Features

Let x be a feature extracted binary taken from a collection of

unpacked malwares. Let F be the set of functions in x found

using BinaryNinja. For each fi ∈F we denote the RoIs in fi

as qi, where qi⊂Rx.

We create a training set D for clustering as follows: Given

the malware xi, For each qi ̸=∅, we summarize the behavior of

fi as 1
|qi|

∑qi and add it to D. This is repeated for all malwares

in our collection.

Experimentally, we found that this representation of fi’s

RoIs best capture the functions’ behaviors in terms of cluster

quality (i.e., using Silhouette Coefficient & Davies Bouldin

Score).

3.3.2 Clustering Model

To cluster the functions in D, we first reduce the dimensionality

from 18 to 5 so that we can scale to 500k functions. The reduc-

tion is performed using principle component analysis (PCA).

Next, we cluster the reduced vectors using HDBSCAN [6]

and denote the clustering of D as C. HDBSCAN is a variant of

the density based clustering algorithm DBSCAN. The reason

we chose HDBSCAN is because (1) it can identify non-convex

clusters (unlike k-means) and (2) it automatically selects the

optimal hyper-parameters for cluster density (unlike classic

DBSCAN).

3.4 Deployment

Next, we describe how DEEPREFLECT is deployed and used

by a malware analyst.

Initialization. To initialize DEEPREFLECT, Molly begins by

unpacking benign and malware binaries. She then passes them

to DEEPREFLECT which (1) extracts our static features, (2)

trains an autoencoder model M on the benign samples, (3)

extracts RoIs Rx from each malware sample, (4) summarizes

each function’s behavior by averaging their RoIs (qi) as D, and

(5) reduces the summaries with PCA and clusters them as C.

1The functions in a binary are heuristically and statically found using a

tool such as BinaryNinja on the CFG.

At this point, Molly has now identified groups of behaviors

(functions) which are malicious (anomalous) according to

M. She can now annotate a small subset of the functions

or proceed with her regular work routine while adding

annotations to D (as mentioned earlier).

Execution. When Molly receives a new sample x, the

behaviors are automatically visualized, localized, and labeled

for her by DEEPREFLECT as follows: (1) x is unpacked using

unipacker [11], (2) x is passed through M and the RoIs Rx

are obtained, (3) functions are identified using BinaryNinja

and each function is summarized as q by averaging its RoIs,

(4) the remaining function summaries are reduced using the

PCA model, (5) each function is associated with the cluster

that is most similar to it,2 and (6) assign the majority cluster

annotations to the functions and map the result back to Molly’s

user interface. This workflow is illustrated in Figure 2.

Molly then investigates the highlighted functions, and while

doing so she (1) obtains a better perspective on what the mal-

ware is doing, (2) annotates any function labeled "unknown"

with the corresponding MITRE category (dynamically updat-

ing D), and (3) is able to observe shared relationships between

other malware samples and families by their shared clusters.

4 Evaluation

In this section, we present our evaluation of DEEPREFLECT.

First, we outline our objectives for each evaluation experiment

and list which research goals (§2.4) are achieved by the exper-

iment. We evaluate DEEPREFLECT’s (1) reliability by running

it on three real-world malware samples we compiled and

compared it to a machine learning classifier, a signature-based

solution, and a function similarity tool, (2) cohesiveness

by tasking malware analysts to randomly sample and label

functions identified in in-the-wild samples and compare how

DEEPREFLECT clustered these functions together, (3) focus

by computing the number of functions an analyst has to reverse

engineer given an entire malware binary, (4) insight by observ-

ing different malware families sharing the same functionality

and how DEEPREFLECT handles new incoming malware

families, and (5) robustness by obfuscating and modifying a

malware’s source code to attempt to evade DEEPREFLECT.

4.1 Dataset

Constructing a good benign dataset is crucial to our model’s

performance. If we do not provide enough diverse behaviors

of benign binaries, then everything within the malware binary

will appear as unfamiliar. For example, if we do not train the

autoencoder on binaries which perform network activities,

then any network behaviors will be highlighted.

To collect our benign dataset, we crawled CNET [4] in 2018

for Portable Executable (PE) and Microsoft Installer (MSI)

2This can be done by measuring centroid distance, using an incremental

DBSCAN, or by reclustering D (which is what we do in this paper).

Category Size Category Size

Drivers 6,123 Business Software 1,692

Games 1,567 Utilities 1,453

Education 1,244 Developer Tools 1,208

Audio 1,023 Security 1,000

Communications 994 Design 844

Digital Photo 826 Video 787

Customization 778 Productivity 730

Desktop Enhancements 699 Internet 695

Networking 612 Browsers 440

Home 390 Entertainment 257

Itunes 43 Travel 17

Table 1: Benign Dataset: 22 categories from CNET.

Label virut vobfus hematite sality crytex

Size 3,438 3,272 2,349 1,313 914

Label wapomi hworld pykspa allaple startsurf

Size 880 720 675 470 446

Table 2: Malware Dataset: Top 10 most populous families.

files from 22 different categories as defined by CNET to en-

sure a diversity of types of benign files. We collected a total of

60,261 binaries. After labeling our dataset, we ran our samples

through Unipacker [11], a tool to extract unpacked executables.

Though not complete as compared to prior work [21, 58], the

tool produces a valid executable if it was successful (i.e., the

malware sample was packed using one of several techniques

Unipacker is designed to unpack). Since Unipacker covers

most of the popular packers used by malware [67], it is reason-

able to use this tool on our dataset. By default, if Unipacker can-

not unpack a file successfully, it will not produce an output. Uni-

packer was able to unpack 34,929 samples. However, even after

unpacking we found a few samples which still seemed partially

packed or not complete (e.g., missing import symbols). We fur-

ther filtered PE files which did not have a valid start address and

whose import table size was zero (i.e., were likely not unpacked

properly). We also deduplicated the unpacked binaries. Unique-

ness was determined by taking the SHA-256 hash value of the

contents of each file. To improve the quality of our dataset,

we only accepted benign samples which were classified as

malicious by less than three antivirus companies (according to

VirusTotal). In total, after filtering, we obtained 23,307 unique

samples. The sizes of each category can be found in Table 1.

To acquire our malicious dataset, we gathered 64,245 mal-

ware PE files from VirusTotal [12] during 2018. We then ran

these samples through AVClass [62] to retrieve malware family

labels. Similar to the benign samples, we unpacked, dedu-

plicated, and filtered samples. Unipacker was able to unpack

47,878 samples. In total, we were left with 36,396 unique PE

files from 4,407 families (3,301 of which were singleton fam-

ilies – i.e., only one sample belonged to that family). The sizes

of the top-10 most populous families can be found in Table 2.

After collecting our datasets, we extracted our features from

each sample using BinaryNinja, an industry-standard binary

disassembler, and ordered each feature vector according to

its basic block’s address location in a sample’s binary.

4.2 Model Setup

After extracting our datasets, we trained the autoencoder on

80% of our benign dataset and tested it on the remaining 20%.

We used a kernel size of 24 with a stride of 1 and normalized

the feature vectors; we found these parameters to improve

results empirically. We trained the model for a maximum of

10 epochs and we obtained a training MSE of 2.5090e-07 and

testing MSE of 2.1575e-07 – recall that a lower the MSE value

means a better reconstruction of the benign samples. It took

roughly 40 hours to train the model on an NVIDIA GeForce

RTX 2080 Ti GPU. 3

4.3 Evaluation 1 – Reliability

To evaluate DEEPREFLECT’s reliability, we explore and

contrast the models’ performance in localizing the malware

components within binaries.

4.3.1 Baseline Models

To evaluate the localization capability of DEEPREFLECT’s

autoencoder, we compare it to a general method and domain

specific method for localizing concepts in samples: (1) SHAP,

a classification model explanation tool [40], (2) CAPA [3],

a signature-based tool by FireEye for identifying malicious

behaviors within binaries,4 and (3) FunctionSimSearch [5],

a function similarity tool.

Given a trained classifier and the sample x, SHAP provides

each feature x(i) in x a contribution score for the classifier’s

prediction. For SHAP’s model, we trained a modified deep

neural network VGG19 [64] to predict a sample’s malware

family and whether the sample is benign. For this model,

we could not use our features because the model would not

converge. Instead, we used the classic ACFG features without

the string or integer features. We call these features attributed

basic block (ABB) features. We trained this model for classifi-

cation (on both malicious and benign samples) and achieved a

training accuracy of 90.03% and a testing accuracy of 83.91%.

In addition to SHAP, we trained another autoencoder on ABB

features to compare to our new features as explained in §3.2.1.

4.3.2 Ground-Truth Dataset

For our ground-truth, we statically identified the locations of

the malicious components (functions) in the source code of

three different malwares. We located these functions in the

binary’s CFG by matching markers (e.g., strings and API calls)

and labeling the corresponding basic blocks as malicious.

All other blocks we labeled as benign. We note that we were

unable to locate 14% to 30% of the malicious functions

3For reproducibility, our source-code and dataset can be found at

https://github.com/evandowning/deepreflect.
4We used the community and expert rule sets v1.2.0 from

https://github.com/fireeye/capa-rules

https://github.com/evandowning/deepreflect
https://github.com/fireeye/capa-rules

(depending on the sample), so they were marked as benign.

These functions were not found because (1) the functions

could not be recognized due to obscured and partial identifiers

(calls and strings) in the binary, and (2) they were lost due to a

limitation of function identification from a static disassembler

such as dynamically resolved functions and anti-static analysis

techniques [16]. Note, the omitted functions are reflected in

the results as false positives (FPs) (Figure 3) so technically

our false positive rate (FPR) is better in reality.

The three malware samples which make up our ground-truth

are rbot, pegasus, and carbanak. We chose rbot because

while it is an older internet relay chat (IRC) botnet from 2004,

it still exists in common malware feeds – i.e., it still appears

in the wild. We also chose it because it compiles into a single

PE file (directly comparable to our PE malware samples from

our dataset). We chose pegasus because it is a newer banking

trojan from 2016 and is composed of multiple payloads (PE

files and DLL files). This allows us to evaluate our tool on files

which could be captured in memory or elsewhere (i.e., not just

assuming that all malware will neatly pack all of its behaviors

into a single file). Finally, we chose carbanak because it is

a recently leaked banking malware from 2014, making it still

relatively modern. The diversity in behaviors, code layout and

implementation, and malware family types and ages is why

we chose these three samples.

4.3.3 Results

The results of this experiment can be found in Figure 3. To

obtain values for each function, we summed its corresponding

basic block SHAP (setting negative values to 0) or MSE values.

DEEPREFLECT vs SHAP. The goal of SHAP is to identify

regions within the model’s inputs which affect the model’s

classification decision. While a malware classifier alone

provides the analyst with the input’s malware family, SHAP

will identify where the most important regions of the input are

for making that decision. Thus, conceptually it could be used

to identify differences between different malware families and

benign software (as previously discussed). However, this may

not be completely effective. The analyst would have to contin-

uously retrain the model whenever a new class of malware was

discovered, and SHAP is inherently slow due to its recursive

algorithm (making multiple passes back and forth through the

neural network). DEEPREFLECT overcomes these issues by

utilizing unsupervised learning and only requiring one pass

through the neural network to retrieve the model’s output.

DEEPREFLECT vs CAPA. Next, we compared

DEEPREFLECT to CAPA [3], a tool which statically

identifies capabilities within executables. It accomplished

this by using hand-written signatures which describe various

behaviors. For example, "connect to HTTP server", "create

process", "write file", etc. Since CAPA is signature-based it

is possible for it to miss malicious behaviors due to lack of

generality, while DEEPREFLECT is trained using unsupervised

learning and does not have this limitation. For DEEPREFLECT,

we selected the detection threshold φ as follows: First, we

plotted the ROC curves of all ground-truth samples (Figure 3).

Then we identified separate thresholds for each sample which

achieved a true positive rate (TPR) of 80%. We chose this TPR

because it was large enough to detect a majority of malicious

functions while keeping the FPs relatively low (for reviewing

individual samples).

An example of where CAPA failed to identify behaviors

was when the API call symbol was obfuscated by the malware

(e.g., dynamically resolving the API call’s name during

runtime). Thus, it missed the function KeyLoggerThread()

which calls various dynamically resolved API calls to log

the victim’s keystrokes. But since there are no interesting

API calls here, CAPA misses it. DEEPREFLECT was able to

successfully identify it because it does not solely rely on API

calls and signatures to discover malicious behaviors.

An example of where DEEPREFLECT was unable to

identify a behavior that CAPA (supposedly) did was an

internal function which transports sent files to the C&C server.

DEEPREFLECT should have conceptually picked up on this,

it failed to do so. However, the API calls are all obfuscated,

so CAPA should have failed here. Upon further investigation,

CAPA believes there is a call here to retrieve a file’s size,

though in the source code such a call does not exist. Examining

a neighboring function, we find it calls GetFileSize().

Therefore, we believe this is an example of an inconsistency

between disassembler function addresses between CAPA’s

default disassembler and BinaryNinja (as both likely use

different methods for function boundary detection). In this

case, DEEPREFLECT discovered all of the malicious functions

that CAPA did. While our tool did not succeed at catching the

aforementioned malicious function (due to the thresholds we

set), it is still more generic and scalable than signature-based

tools, like CAPA, which rely on API calls and strings.

DEEPREFLECT vs FunctionSimSearch. FunctionSim-

Search is a function similarity tool developed by Google

Project Zero [5]. We trained a database on benign functions

from our dataset with default parameters. After training their

tool on our benign dataset, we queried it with the functions in

our ground-truth dataset. We specified for the tool to output the

top-1000 most common functions and their similarity scores.

We chose 1,000 because of the speed at which it takes for a

query to return from the tool (1 hour) and the sheer volume

of functions inserted into the database (1,065,331 functions).

To use this as an anomaly detector, we would expect that

unfamiliar functions (i.e., malicious functions) would result in

significantly smaller similarity scores than familiar functions.

As seen in Figure 3, it performed poorly. It should be noted

that a possible explanation for the poor performance is due

to disagreements between function boundaries (as is common

with different disassembly tools), but that this should not be

drastically different (as seen with CAPA’s disassembly tool

which performed better).

Sample from the Wild. For verifying DEEPREFLECT’s

Figure 3: The ROC plot (performance at every threshold) for DEEPREFLECT, AE using ABB features, SHAP using ABB features, CAPA,

and FunctionSimSearch on the three ground truth malware samples. The horizontal black bar represents a TPR of 80%.

ability to identify malicious functionality for in-the-wild

samples, we randomly selected one binary from the virut

family. We chose this sample binary to reverse engineer

because it was simple (i.e., it was relatively small and were

able to reverse engineer every internal function) and virut

has been a well-studied botnet from 2006 - 2013 and beyond.

First, a malware analyst reverse engineered this sample using

CAPA and BinaryNinja, manually examining all 39 internal

functions and labeling them as either malicious (according to

the MITRE framework) or benign. Next, the analyst executed

DEEPREFLECT on this sample and it identified 15 RoI’s. Com-

paring this to our analyst’s manual analysis,we initially thought

that DEEPREFLECT missed one function (logic for comparing

an argument that will either lead to terminating the malware’s

processor or not). Due to differences between CAPA’s default

disassembler’s disassembly and BinaryNinja’s disassembly,

the function addresses (boundaries) were not identical. In

this case, CAPA identified process termination at this internal

function, where BinaryNinja contained no such logic at that

function location. Because of this discrepancy, DEEPREFLECT

essentially caught all malicious functionalities. Additionally

we had an analyst use DEEPREFLECT on a malware which

he has analyzed in the past. This is discussed more in §A.1.

Summary. We have shown that our autoencoder localization

approach in DEEPREFLECT achieves goals G1 and G3 by

identifying malicious behaviors in binaries without training

on sample malwares or labeled data. Additionally, we have

demonstrated its improvement over a popular explanation

framework (SHAP) and signature-based method (CAPA).

Most importantly, DEEPREFLECT is more practical than

SHAP (which is slower and requires labeled dataset) and

CAPA (a signature-based solution), because the model does

not require the expensive process of having experts label

malwares or their components. Lastly, we have shown that our

features perform better than the ABB features.

4.4 Evaluation 2 – Cohesiveness

To evaluate DEEPREFLECT’s ability to classify the malware

components identified by the AE, we explore the semi-

supervised clustering model’s quality with the help of five

experienced malware analysts.

4.4.1 Experiment Setup

First, we used the autoencoder M and identified 593,181

malicious components (functions) in 25,206 malware samples.

This is less than the original ~36k samples because some of the

samples either (1) never finished extracting features, (2) had

no RoIs detected above the selected threshold, or (3) the RoI

did not exist in the binary – the result of which perplexes us but

could be explained as either data corruption, some issue with

automatic upgrading BinaryNinja between extracting features

and running clustering, or because the basic block exists in

a function we do not consider (i.e., an external function)).

For clustering a large number of malware sample functions,

we wanted to keep the FPR at a low level of 5%. In industry and

real-world environments, lower FPR is often times more val-

ued than TPR. Using this threshold (which yielded a combined

TPR/FPR of 40%/5% on our ground-truth samples), we used

DEEPREFLECT to extract and cluster the identified functions

as C (§3.3). After running PCA on the function feature vectors,

HDBSCAN produced 22,469 clusters using the default hyper-

parameters. The largest cluster contained 6,321 functions and

the smallest contained 5. There were 59,340 noise points.

In Figure 10, we present the distribution on the clusters’

sizes. The figure shows that there is a long-tail distribution

(common in density-based clustering) where the top-10 most

populous clusters make up 5% of the functions.

The Reverse Engineers. To evaluate the clustering quality we

recruited five malware analysts with 2-7 years of experience

in reverse engineering.

The five analysts randomly sampled functions and labeled

them using the MITRE ATT&CK [9] categorization. If the

functions were deemed benign, the analysts labeled them as

such. Overall, the analysts randomly sampled 177 functions

(for the 176 different types of MITRE ATT&CK labels) each

from the 25 largest malware family RoIs (chosen because

of their size and diversity of behaviors). Time was a limiting

factor to how many functions were selected. While 177

functions is small compared to the 600k extracted, it took

between 15-30 minutes (and sometimes longer) to reverse

engineer each function. We then selected one analyst to group

these functions by hand. Finally, we compared the manual

groupings to DEEPREFLECT’s clusters performed various

Figure 4: Cluster Diversity. Left: the distribution of families per

cluster. Right: the distribution of addresses per cluster to show

that there is no bias in function location.

measurements. In Table 3, we present the various MITRE

ATT&CK labels the analysts came across in their work.

4.4.2 Results - Cluster Quality

After manually labeling functions, the analysts ended up with

78 malicious clusters. There were 5 cases where the handmade

clusters appeared in different clusters in C. For brevity, we

will only discuss three here. In the first case, the two functions

which resided within the handmade cluster were deemed

similar by the analyst. They were both small functions which

called SetEvent(), though were not identical in content.

One function had one more instruction that set the subroutine

argument’s value + 0x40 offset to 0. This was not enough

of a difference to the analyst, so they clustered them as the

same. However, to HDBSCAN the feature vector contents

would have changed and thus (depending on parameters) may

separate these two functions. This is a case where HDBSCAN

was too sensitive. In the second case, three functions were

deemed as similar to the analyst, but were separated into two

clusters in C. The differing function contained a precondition

IsProcessorFeaturePresent(), however both called

TerminateProcess() on GetCurrentProcess() – thus

they were close enough in behavior as to label them "Discov-

ery: Virtualization/Sandbox Evasion". These are indicative of

sandbox evasion because these techniques look for differences

between processes in a sandbox and process on a real host [54].

Normally, one of the only reasons malware will attempt to exit

is if they receive a command to do so from the C&C server

or if they are in an undesirable environment (either not fit

for the malware to infect or is determined to be an analysis

environment). In the third case, a handmade cluster contained

two functions which were separated in C. Similar to the other

cases, these functions were close enough, but not exact, in

content. They both performed GetTickCount() as well as

calling various other internal functions in the same fashion.

There were 8 cases where the handmade clusters were merged

into the same clusters in C.

Though these errors appeared, 89.7% of the analyst’s

handmade clustered functions matched what our tool created.

Thus, we consider the clustering results trustworthy. In the

future, HDBSCAN’s parameters could be tuned to correct

these discrepancies.

Error Margins. We now evaluate what percentage of the clus-

ters were benign versus malicious. When labeling randomly

sampled functions, we look at hand-clusters with consistent

labels. Sometimes our analysts disagreed with each other on

what MITRE label to assign to a function. For consistency, we

only consider those on which the analysts agreed. We found

that of the 119 functions, 60.5% were malicious and 39.4%

were benign, with a margin-of-error of 9.29%. Examining the

percentages for all functions (regardless of their cluster) we

find similar percentage results. Note that in §4.3.3 the false

positive rate was much lower for our ground truth samples.

This is because they only selected from the largest malware

family RoIs (i.e., not uniformly random for the entire 600k

population). This was done to ensure the analysts reviewed the

most commonly extracted functions, which gave the analysts

a better chance of discovering commonly shared malicious

functions like C&C behaviors, anti-analysis behaviors, etc.

Summary. The malware analysts found that the clusters of

DEEPREFLECT are consistent (regardless of malware family

or the function’s location within the binary). Although the

amount of selected samples should capture the population,

the results may differ on a larger sample size. We also

found that the clustering matches 89.7% of an analyst’s

manually-clustered functions, contributing to goal G1.

4.5 Evaluation 3 – Focus

From prior work [69] and discussions with other analysts,

we found that malware analysts’ static reverse-engineering

workflow begins with forming hypotheses about where various

functionalities are within a malware binary. This is normally

accomplished by observing where suspicious strings (e.g.,

URLs, domains) or API calls (e.g., connect or send) exist.

However, as demonstrated in §4.3, these indicators cannot be

relied upon alone. The benefit of DEEPREFLECT is its ability to

focus the attention of the malware analyst, rather than sending

them blindly to search through functions within each binary.

We evaluate this by (1) calculating the percent of highlighted

functions out of all the malware’s functions, for each malware

binary, (2) analyzing the false positives and a potential ranking

scheme for DEEPREFLECT to prioritize which highlighted

functions the analyst should look at first, and (3) discussing

false negatives and how they might be mitigated in the future.

Workload Reduction. For each malware sample, we extracted

each function which contained at least one RoI found by the

autoencoder and compare that to the total number of internal

functions within the binary. As seen in Figure 5, a large major-

ity of the highlighted functions reduced the amount of functions

for the analyst to view by at least 90%. The minimum reduction

was 0% (i.e., all functions were highlighted), maximum reduc-

tion was over 99.9999%, and the average reduction was 85%.

These percentages by themselves could be misleading if

number of functions in a malware sample is small to begin

with. In terms of raw numbers, the min/max/average number

of highlighted functions per malware sample was 1/527/23.53

Figure 5: Function Counts. Percentage of functions (per malware

sample) the analyst has to review.

respectively. The min/max/average number of total functions

per malware sample was 1/26,671/663.81 respectively. This

demonstrates that, on average, the analyst only has to review

24 functions, compared to 664 functions. However, we need

to delve further, as these functions could be small in size and

thus likely trivial to reverse engineer.

To answer this, we counted up the number of basic

blocks for each function within each malware sample. Basic

blocks can be an indicator of the complexity of a function.

The min/max/average number of basic blocks within each

highlighted function was 1/134,734/96.02 respectively. The

min/max/average number of basic blocks within each function

was 1/22,947/16.51 respectively. This shows that most of the

highlighted functions were much more complex compared

to the average function, and that if those functions were

automatically labeled for an analyst, it would significantly

reduce their workload.

False Positives & Prioritization

False positives exist in all security solutions. Reducing them

is a never-ending task for those who work in real-world envi-

ronments. When running DEEPREFLECT on our ground-truth

samples using our cluster threshold, rbot contained 39 true

positives (TPs) and 23 FPs, pegasus contained 22 TPs and 80

FPs, andcarbanak contained 8 TPs and 69 FPs. While the TPs

are relatively small (40% TPR), the FPs are much smaller com-

paratively (5% vs 25% FPR). To further reduce FPs, a solution

is to sort the functions identified by DEEPREFLECT according

to their MSE (similar to how we determined the threshold

for clustering). Intuitively, the higher the MSE, the more ma-

licious the function it should be. When examining the top-100

highest ranked components, DEEPREFLECT/SHAP had a

precision of 0.629/0.487 on rbot, 0.229/0.138 on pegasus,

and 0.111/0.01 on carbanak. As expected, the precision

decreases when adding more top components since model’s

confidence is less on those with lower MSE (both pegasus

and carbanak have larger code bases as they are more modern

malware). These results are also consistent with our analyst’s

hands-on evaluation on Mikey in §A.1 where the false

positives were placed into the bottom third in terms of MSE.

Sorting functions by MSE value is not always reliable. In

this case, other basic mitigation strategies can be utilized. For

example, the analyst can use simple heuristics (like those used

in CAPA) on the functions extracted by DEEPREFLECT to

get an understanding of what behavior category it may be.

They can also prioritize functions by their uniqueness to the

other functions in their dataset, finding which functions are

potentially new emerging malicious behaviors the analyst has

not seen before. For example, sort functions by their associated

cluster’s size (smaller clusters denoting more unique and less

common functionalities).

False Negatives. False negatives are also common in all

security solutions. Unknown threats will always exist which

evade these systems. Using the same cluster threshold,

DeepReflect had 53 FNs (325 TNs) for rbot, 27 FNs (407

TNs) for pegasus, and 48 FNs (2,111 TNs) for carbanak.

Next, we discuss three FN cases from our ground-truth sample

rbot. The first was a function CaptureVideo(), which took

incremental screenshots of the victim’s computer. This func-

tion had many calls to external APIs which were obfuscated

(as is commonly done in malware). While we demonstrated

that our tool is able to capture malicious functions containing

obfuscated API calls, it is not always reliable at doing so,

and any tool which does not have access to higher-level

function calls will suffer because of it. The second is a function

getcdkeys()which gathers the video game installation keys

from the victim’s host and sends it to the attacker’s C&C

server. Again, calls were made to obfuscated registry key

API calls, which provides crucial contextual information. It

might also be the case that some of the benign software games

perform this exact same functionality to check if the user has

installed a valid copy of the video game. This illustrates the

need for carefully procuring a training dataset (as discussed

later in §5). Finally, a third FN is a function DDOSAttack()

which calls functions ResolveAddress(), SpoofIP(), and

SendDDoS() which launches the attack. This function may

have been missed because it acts more like a caller function

to launch malicious behaviors. However, this caller function

gives important contextual information about how the attack

is launched. To mitigate this, a simple "guilt by association"

heuristic could be used in the future where functions calling

suspicious behaviors are identified as suspicious. Additionally,

the threshold could be tuned depending on the analyst’s goals

of whether to increase TPs or reduce FPs.

Finally, we detail concrete examples of malicious function-

alities identified by DEEPREFLECT (and labeled via MITRE)

in Appendix A. There, we illustrate behaviors such as C&C

communication for file dropping (Figure 6), file and data

deobfuscation/decoding (Figure 7), and searching for various

files to copy the contents of (Figure 8).

Summary. We have demonstrated that DEEPREFLECT has the

ability to focus the analyst’s attention on a variety of malicious

activities within a malware sample. For most samples, it

reduces their search space by 90% and 85% on average. This

is helpful for when analysts need a high-level understanding

of where malicious behaviors may exist so they can analyze

them more in-depth (e.g., debugging). This satisfies goal G2.

4.6 Evaluation 4 – Insight

To evaluate if DEEPREFLECT provides meaningful insights

into the relationships of malware families and their behaviors,

we explored the cluster diversity. The left side of Figure 4

plots the number of distinct families per cluster in C. It can

be seen that there are many shared malware techniques and

variants between the families.

Diversity. Naturally, most of the clusters only have one

malware family (explained by the long-tail distribution of

our clusters shown in Figure 10). However, 10s to 1000s

of clusters include a variety of families – some which even

contain over 200 different families. For example, tiggre and

zpevdo families share a "Execution: command and Scripting

Interpreter" behavior where they call GetCommandLineA()

and parse the characters involved (as described by MITRE).

Singleton Samples. These are malware families with only one

sample. Since we use an autoencoder, we can capture novel

behaviors from singleton samples. To check if DEEPREFLECT

can identify malicious functions in a singleton sample,

we observed if any singleton samples in our dataset got

clustered with other malware families. Indeed, we found that

DEEPREFLECT identified 1,763 clusters which contained at

least one singleton sample.

Novel Malware Families. Next, we examine what happens

when novel families are introduced to DEEPREFLECT. We

made a clustering model C1 on all of our malwares except for

four families. Then, we added the families to the set and clus-

tered the set as C2. When we compared C1 to C2, we found that

(1) new clusters were created by introducing the new families

and (2) that portions of those families’ functions were added

to old clusters (i.e., the analyst would receive classification

information on novel families). For more details, see §A.3.

Summary. We found that DEEPREFLECT provides insight

into the relationship of malware behaviors (G4). In deploy-

ment, this meta information can be associated to the identified

components providing the analysts with immediate insights.

4.7 Evaluation 5 – Robustness

Obfuscation. Given the rise of adversarial machine learning,

we must be aware that the adversary may attempt to obfuscate

their code to mitigate the productivity of DEEPREFLECT.

Therefore, we evaluated DEEPREFLECT against an obfusca-

tion attack scenario. We did not evaluate against packing or

cryptors because those are out of scope for our tool. Instead,

we utilize Obfuscator-LLVM [31] (denoted as ollvm). Using

ollvm we obfuscated our rbot sample’s source code using

five techniques: (A) control-flow flattening, (B) instruction

substitution, (C) bogus control-flow, (D) combining techniques

(A) & (B), and (E) combining techniques (B) & (C).

Examining the functions extracted and clustered,

DEEPREFLECT was mostly unaffected by the obfuscations.

This makes sense because the autoencoder highlights function-

alities it does not recognize and our features contain API calls

(which were not modified by ollvm). For details, see §A.4.

Mimicry-like Attack. Next, we performed a simple mimicry

attack where we inserted benign code which directly

manipulated our features into malicious functions in our

ground-truth samples. The benign code chosen was taken from

an open-source repository of basic code for performing integer,

string, and file I/O operations [10]. It was chosen because it

has been used as a benchmark to test resilience against obfus-

cations [10]. In particular, we observed how much the MSE

values changed for each function when using DEEPREFLECT

compared to the AE we trained on ABB features. We targeted

12 functions (4 from each ground-truth sample) from a variety

of behaviors (e.g., anti-AV, keylogger, dropper, DDoS, etc.).

Using thresholds at TPR 80% from Figure 3 for each sample,

we found that DEEPREFLECT outputted significantly larger

MSE values (by several orders of magnitude) compared to the

threshold for these modified functions (including the original

functions) compared to the other AE. This suggests that

DEEPREFLECT is more confident in labeling these functions

as malicious. While none of these attacks were able to evade

either model consistently, we observed that DEEPREFLECT’s

MSE values do not change drastically enough to cause concern.

In addition, we observed that sometimes inserting the function

with file I/O operations caused DEEPREFLECT to think a func-

tion was more anomalous than it originally considered (more

so than compared to the AE trained on ABB features – this

is reflected by the fact that both average MSE values increased

after the attempted mimicry attacks). It also demonstrates the

difficulty the attacker is tasked with: not just any benign code

can be inserted into the malicious functions to evade it.

To increase the likelihood of bypassing DEEPREFLECT,

we tested two more benign functions: (1) adding a network

connect/send example hosted by Microsoft’s website to the

dropper malicious function, (2) adding the same example to

the DDoS behavior, and (3) adding a process I/O creation

example to a remote code execution where the malware

starts a ‘cmd.exe’ process. The same results were observed,

where our features outperformed ABB features in addition

to DEEPREFLECT considering them more unfamiliar.

Summary. Although DEEPREFLECT was not significantly

affected by ollvm’s obfuscation methods or our basic mimicry

experiment, we are certain that DEEPREFLECT can be evaded.

However, these experiments demonstrate that it is not easily

fooled by these basic attacks.

5 Discussion

To summarize, we demonstrated that DEEPREFLECT can re-

liably identify malicious activities within malware samples (as

shown in §4.3 and §4.6), which satisfies G1 from our research

goals §2.4. Through other experiments we demonstrated that

the system can focus the attention of the analyst and handle

new malware families (shown in §4.4 and §4.5) which satisfies

goals G2 and G3. It also demonstrates that DEEPREFLECT is

able to identify insights into shared functionalities of malware

behaviors, satisfying G4 (the remaining goal). We also show

that our tool is better than other baseline approaches such as

explainable machine learning or signature-based solutions.

5.1 Limitations

Every system has weaknesses and ours is no exception.

Adversarial Attacks. A motivated adversary could poison

the training dataset [46, 51] to cause the autoencoder to create

a vulnerable model that would effectively hide the malware’s

functions. They could also blend in to look like a benign

binary [24, 70]. Many papers have explored attacking machine

learning models at the architectural level [47, 48, 73]. They

could also poison the dataset used to cluster [19]. While these

attacks do exist, common countermeasures [49, 65, 71, 74] can

be applied to subvert them in the future.

An adversary could also attack our features by manipulating

them to thwart our system. However, this could prove to be

difficult, as our features are based on characteristics not easily

changed. They would have to know how to precisely modify

the structure of the CFG, types of instructions, and types of API

calls used all without breaking the malware’s dynamic function-

ality. This is not trivially done, either pre- or post-compile time.

Training Data Quality. Finally, our autoencoder model

heavily depends on the content and quality of the benign

dataset. If some functionality is left out of the training set, then

the results will become biased. For example, if we were not

to include any programs which performed network behaviors,

then every network behavior seen would be something

considered as malicious. Therefore, one must be careful to

select a wide variety of benign software to compliment the

malicious behaviors. On the other hand, if we train on too

many malicious-like functionalities, our system may miss

them in malware. For example, if Remote Desktop Protocol

(RDP) behavior was an application in our benign dataset, our

system may not label any RDP functionality as malicious. A

proper balance needs to be struck to tailor our system to detect

malicious functionalities the analyst is interested in exploring.

Human Error. DEEPREFLECT depends heavily on human

analyst experience and agreement. There were issues with

labeling the pegasus ground-truth in the beginning – we

were not perfect in our initial source-code labeling. After

debugging, we realized that there was a function which

removed the history of internet connections via a remote

desktop protocol (RDP) which was actually not a FP. Another

supposed FP spawned a thread to interact with the remote

victim’s service control manager (SCM) which is certainly

a malicious behavior. Thus we needed to update our labels,

as there were other examples of this. While this may initially

seem like a limitation, we see this as a potential teaching

application. That is, experienced analysts can use our tool to

provide labeled examples of functions and code from malware

samples to facilitate training new or less-experienced analysts.

6 Related Works

Deep Learning and Malware. Recently, deep learning has

been adopted by the malware analysis community. A majority

of the goals are to classify or detect malware samples using

deep learning neural networks [50, 66, 68]. Malconv [53]

extracted raw byte values from executables and trained them

on a convolutional neural network (CNN). Neurlux [30]

extracted features from dynamic sandbox reports. Even

Microsoft hosted a Kaggle competition [8, 56] where the goal

was to take binaries (without their PE header attached) and

classify them accurately according to 9 malware families.

Binary similarity has also been studied using both static and

dynamic features [2,17,22,75]. While binary similarity is a sim-

ilar problem to ours, it differs in an important way: their goal is

to compare each binary with every other binary, whereas we en-

code what a particular type of binary looks like (benign binary)

into a CNN and utilize reconstruction errors to tell us what por-

tions it does not recognize. Our goal is not to formally identify

similarities between binaries – though we do extend our anal-

ysis to identified shared concepts between malware families.

Autoencoders and Security. This paper is not the first to

study autoencoders on cybersecurity datasets. [34] used a deep

autoencoder to generalize what malware samples look like and

provided the results to a generative adversarial network (GAN)

in an attempt to thwart static techniques to obfuscate malware

(e.g., re-ordering function layout). Other papers [20,28,32,76]

use autoencoders to generate inputs to train other malware

classifiers as a way to improve generalization. Our work differs

significantly, as we train an autoencoder on benign binaries in

an attempt to generalize what looks normal and use the recon-

struction MSE to identify malicious functionalities in malware

binaries. In [43] the authors used an ensemble of autoencoders

as an NIDS by detecting abnormal feature vectors (snapshots

of network traffic statistics). However, [43] uses Equation 1

to identify the abnormality of the observation as a whole,

whereas DEEPREFLECT uses an autoencoder to localize one

or more abnormalities within an observation using Equation 2.

To the best of our knowledge, there aren’t any related

works which statically identify and localize malicious

functionalities in malware using machine learning, let alone

with an unsupervised approach using autoencoders.

7 Conclusion

In this paper, we introduced DEEPREFLECT: a tool for

localizing and identifying malicious components in malware

binaries. The tool is practical since it requires no labeled

datasets perform localization and a small number of labels for

classification – collected incrementally from analysts during

their regular workflow. We hope that this tool and published

code will help analysts around the world by identifying where

and what malicious functionalities exist in malware samples.

8 Acknowledgments

We thank the anonymous reviewers for their helpful and

informative feedback. This material was supported in part by

the Office of Naval Research (ONR) under grants N00014-

17-1-2895, N00014-15-1-2162, and N00014-18-1-2662, and

the Defense Advanced Research Projects Agency (DARPA)

under contract HR00112090031. Any opinions, findings,

conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of ONR or DARPA.

References

[1] Binaryninja. https://binary.ninja/.

[2] Bindiff. https://www.zynamics.com/bindiff.

html.

[3] Capa. https://github.com/fireeye/capa.

[4] Cnet. https://download.cnet.com/windows.

[5] Functionsimsearch. https://github.com/

googleprojectzero/functionsimsearch.

[6] Hdbscan. https://github.com/scikit-learn-

contrib/hdbscan.

[7] Ida pro. https://www.hex-rays.com/products/

ida/.

[8] Microsoft malware classification challenge (big

2015). https://www.kaggle.com/c/malware-

classification.

[9] Mitre att&ck. https://attack.mitre.org/

versions/v7/matrices/enterprise/windows/.

[10] Obfuscation benchmarks. https://github.com/

tum-i4/obfuscation-benchmarks.

[11] unipacker: Automatic and platform-independent

unpacker for windows binaries based on emulation.

https://github.com/unipacker/unipacker.

[12] Virustotal. https://www.virustotal.com/.

[13] Virustotal statistics. https://www.virustotal.

com/cs/statistics/, Aug 2020.

[14] Hyrum S. Anderson and Phil Roth. EMBER: An

Open Dataset for Training Static PE Malware Machine

Learning Models. arXiv preprint arXiv:1804.04637,

April 2018.

[15] Dennis Andriesse, Asia Slowinska, and Herbert Bos.

Compiler-Agnostic Function Detection in Binaries. In

IEEE European Symposium on Security and Privacy,

2017.

[16] Michael Bailey. Carbanak week part one: A rare occur-

rence. https://www.fireeye.com/blog/threat-

research/2019/04/carbanak-week-part-one-

a-rare-occurrence.html, Apr 2019.

[17] Davide Balzarotti, Marco Cova, Christoph Karlberger,

Engin Kirda, Christopher Kruegel, and Giovanni Vigna.

Efficient Detection of Split Personalities in Malware. In

NDSS, 2010.

[18] Ulrich Bayer, Paolo Milani Comparetti, Clemens

Hlauschek, Christopher Kruegel, and Engin Kirda.

Scalable, Behavior-Based Malware Clustering. In NDSS,

volume 9, pages 8–11. Citeseer, 2009.

[19] Battista Biggio, Konrad Rieck, Davide Ariu, Christian

Wressnegger, Igino Corona, Giorgio Giacinto, and Fabio

Roli. Poisoning behavioral malware clustering. In Pro-

ceedings of the 2014 Workshop on Artificial Intelligent

and Security Workshop, pages 27–36. ACM, 2014.

[20] Omid E. David and Nathan S. Netanyahu. Deepsign:

Deep learning for automatic malware signature gen-

eration and classification. In 2015 International Joint

Conference on Neural Networks (IJCNN), pages 1–8.

IEEE, 2015.

[21] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke

Lee. Ether: malware analysis via hardware virtualization

extensions. In ACM Conference on Computer and

Communications Security, pages 51–62. ACM, 2008.

[22] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe

Charland, and Mourad Debbabi. Binclone: Detecting

code clones in malware. In 2014 Eighth International

Conference on Software Security and Reliability (SERE),

pages 78–87. IEEE, 2014.

[23] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,

Brian Testa, and Heng Yin. Scalable graph-based

bug search for firmware images. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 480–491. ACM, 2016.

[24] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci,

Oleg M. Kolesnikov, and Wenke Lee. Polymorphic

Blending Attacks. In USENIX Security Symposium,

2006.

[25] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee,

and others. BotMiner: Clustering Analysis of Network

Traffic for Protocol-and Structure-Independent Botnet

Detection. In USENIX Security Symposium, pages

139–154, 2008.

[26] Part Guide. Intel® 64 and ia-32 architectures software

developer’s manual. Combined Volumes: 1, 2A, 2B, 2C,

2D, 3A, 3B, 3C, 3D, and 4, 2020.

https://binary.ninja/
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://github.com/fireeye/capa
https://download.cnet.com/windows
https://github.com/googleprojectzero/functionsimsearch
https://github.com/googleprojectzero/functionsimsearch
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://attack.mitre.org/versions/v7/matrices/enterprise/windows/
https://attack.mitre.org/versions/v7/matrices/enterprise/windows/
https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/unipacker/unipacker
https://www.virustotal.com/
https://www.virustotal.com/cs/statistics/
https://www.virustotal.com/cs/statistics/
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html
https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

[27] Yotam Gutman. Stop the churn, avoid burnout: How to

keep your cybersecurity personnel. SentinelOne, Mar

2020.

[28] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye,

and Xin Li. DL4MD: A deep learning framework for

intelligent malware detection. In Proceedings of the

International Conference on Data Science (ICDATA),

page 61. The Steering Committee of The World

Congress in Computer Science, Computer Engineering

and Applied Computing (WorldComp), 2016.

[29] Suman Jana and Vitaly Shmatikov. Abusing file process-

ing in malware detectors for fun and profit. In IEEE Sym-

posium on Security & Privacy, pages 80–94. IEEE, 2012.

[30] Chani Jindal, Christopher Salls, Hojjat Aghakhani,

Keith Long, Christopher Kruegel, and Giovanni Vigna.

Neurlux: dynamic malware analysis without feature en-

gineering. In Proceedings of the 35th Annual Computer

Security Applications Conference, pages 444–455, 2019.

[31] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie

Michielin. Obfuscator-LLVM – Software Protection for

the Masses. In Proceedings of the IEEE/ACM 1st Inter-

national Workshop on Software Protection, SPRO’15,

Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[32] Temesguen Messay Kebede, Ouboti Djaneye-Boundjou,

Barath Narayanan Narayanan, Anca Ralescu, and

David Kapp. Classification of malware programs using

autoencoders based deep learning architecture and its

application to the microsoft malware classification

challenge (big 2015) dataset. In 2017 IEEE National

Aerospace and Electronics Conference (NAECON),

pages 70–75. IEEE, 2017.

[33] Hyang-Ah Kim and Brad Karp. Autograph: Toward

Automated, Distributed Worm Signature Detection. In

USENIX Security Symposium, volume 286. San Diego,

CA, 2004.

[34] Jin-Young Kim, Seok-Jun Bu, and Sung-Bae Cho.

Zero-day malware detection using transferred generative

adversarial networks based on deep autoencoders.

Information Sciences, 460:83–102, 2018.

[35] Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna,

and B. S. Manjunath. Sigmal: A static signal processing

based malware triage. In Proceedings of the 29th Annual

Computer Security Applications Conference, pages

89–98. ACM, 2013.

[36] Clemens Kolbitsch, Paolo Milani Comparetti, Christo-

pher Kruegel, Engin Kirda, Xiao-yong Zhou, and

XiaoFeng Wang. Effective and Efficient Malware

Detection at the End Host. In USENIX Security

Symposium, pages 351–366, 2009.

[37] Deguang Kong and Guanhua Yan. Discriminant malware

distance learning on structural information for automated

malware classification. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge dis-

covery and data mining, pages 1357–1365. ACM, 2013.

[38] Christopher Kruegel, William Robertson, Fredrik Valeur,

and Giovanni Vigna. Static disassembly of obfuscated

binaries. In USENIX Security Symposium, volume 13,

pages 18–18, 2004.

[39] Bo Li, Kevin Roundy, Chris Gates, and Yevgeniy

Vorobeychik. Large-scale identification of malicious

singleton files. In Proceedings of the Seventh ACM

on Conference on Data and Application Security and

Privacy, pages 227–238, 2017.

[40] Scott M. Lundberg and Su-In Lee. A unified approach to

interpreting model predictions. In Advances in Neural In-

formation Processing Systems, pages 4765–4774, 2017.

[41] Enrico Mariconti, Lucky Onwuzurike, Panagiotis

Andriotis, Emiliano De Cristofaro, Gordon Ross, and

Gianluca Stringhini. MAMADROID: Detecting

Android Malware by Building Markov Chains of

Behavioral Models. Proceedings of 24th Network and

Distributed System Security Symposium (NDSS), 2017.

[42] Najmeh Miramirkhani, Mahathi Priya Appini, Nick

Nikiforakis, and Michalis Polychronakis. Spotless

Sandboxes: Evading Malware Analysis Systems using

Wear-and-Tear Artifacts. IEEE Symposium on Security

& Privacy, 2017.

[43] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and

Asaf Shabtai. Kitsune: An ensemble of autoencoders for

online network intrusion detection. In The Network and

Distributed System Security Symposium (NDSS) 2018,

2018.

[44] Andreas Moser, Christopher Kruegel, and Engin Kirda.

Limits of static analysis for malware detection. In

Annual Computer Security Applications Conference,

pages 421–430. IEEE, 2007.

[45] James Newsome, Brad Karp, and Dawn Song. Polygraph:

Automatically generating signatures for polymorphic

worms. In IEEE Symposium on Security & Privacy,

pages 226–241. IEEE, 2005.

[46] James Newsome, Brad Karp, and Dawn Song. Paragraph:

Thwarting signature learning by training maliciously. In

International Workshop on Recent Advances in Intrusion

Detection, pages 81–105. Springer, 2006.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z. Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning.

In The ACM Asia Conference on Computer and

Communications Security, pages 506–519. ACM, 2017.

[48] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z. Berkay Celik, and Ananthram Swami.

The limitations of deep learning in adversarial settings.

In IEEE European Symposium on Security and Privacy

(EuroS&P), pages 372–387. IEEE, 2016.

[49] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh

Jha, and Ananthram Swami. Distillation as a defense to

adversarial perturbations against deep neural networks.

IEEE Symposium on Security & Privacy, 2016.

[50] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian,

Mady Marinescu, and Anil Thomas. Malware classifica-

tion with recurrent networks. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1916–1920. IEEE, 2015.

[51] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad

Fogla, and Monirul Sharif. Misleading worm signature

generators using deliberate noise injection. In IEEE Sym-

posium on Security & Privacy, pages 15–pp. IEEE, 2006.

[52] Roberto Perdisci, Wenke Lee, and Nick Feamster.

Behavioral Clustering of HTTP-Based Malware and

Signature Generation Using Malicious Network Traces.

In NSDI, pages 391–404, 2010.

[53] Edward Raff, Jon Barker, Jared Sylvester, Robert

Brandon, Bryan Catanzaro, and Charles K. Nicholas.

Malware detection by eating a whole exe. In Workshops

at the Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[54] Thomas Raffetseder, Christopher Kruegel, and Engin

Kirda. Detecting system emulators. In Information

Security, pages 1–18. Springer, 2007.

[55] Alison DeNisco Rayome. Cybersecurity burnout: 10

most stressful parts of the job. TechRepublic, May 2019.

[56] Royi Ronen, Marian Radu, Corina Feuerstein, Elad

Yom-Tov, and Mansour Ahmadi. Microsoft malware

classification challenge. CoRR, abs/1802.10135, 2018.

[57] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-net: Convolutional networks for biomedical image

segmentation. MICCAI, 2015.

[58] Paul Royal, Mitch Halpin, David Dagon, Robert

Edmonds, and Wenke Lee. Polyunpack: Automating the

hidden-code extraction of unpack-executing malware.

In Annual Computer Security Applications Conference,

pages 289–300. IEEE, 2006.

[59] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and

Pablo G. Bringas. Opcode sequences as representation

of executables for data-mining-based unknown malware

detection. Information Sciences, 231:64–82, 2013.

Publisher: Elsevier.

[60] Igor Santos, Javier Nieves, and Pablo G. Bringas. Semi-

supervised learning for unknown malware detection. In

International Symposium on Distributed Computing and

Artificial Intelligence, pages 415–422. Springer, 2011.

[61] Matthew G. Schultz, Eleazar Eskin, F. Zadok, and

Salvatore J. Stolfo. Data mining methods for detection

of new malicious executables. In IEEE Symposium on

Security and Privacy, pages 38–49. IEEE, 2001.

[62] Marcos Sebastián, Richard Rivera, Platon Kotzias, and

Juan Caballero. AVclass: A Tool for Massive Malware

Labeling. In International Symposium on Research

in Attacks, Intrusions, and Defenses, pages 230–253.

Springer, 2016.

[63] M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza,

and Muddassar Farooq. Pe-miner: Mining structural

information to detect malicious executables in realtime.

In International Workshop on Recent Advances in

Intrusion Detection, pages 121–141. Springer, 2009.

[64] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[65] Microsoft Defender ATP Research Team. New machine

learning model sifts through the good to unearth the bad

in evasive malware. Microsoft Security, Aug 2019.

[66] Microsoft Threat Protection Intelligence Team. Mi-

crosoft researchers work with intel labs to explore new

deep learning approaches for malware classification.

Microsoft Security, May 2020.

[67] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,

and Pablo G. Bringas. SoK: Deep Packer Inspection:

A Longitudinal Study of the Complexity of Run-Time

Packers. IEEE Symposium on Security & Privacy, 2015.

[68] R. Vinayakumar, K. P. Soman, and Prabaharan Poor-

nachandran. Deep android malware detection and

classification. In International Conference on Advances

in Computing, Communications and Informatics

(ICACCI), pages 1677–1683. IEEE, 2017.

[69] Daniel Votipka, Seth Rabin, Kristopher Micinski,

Jeffrey S. Foster, and Michelle L. Mazurek. An Observa-

tional Investigation of Reverse Engineers’ Processes. In

USENIX Security Symposium, pages 1875–1892, 2020.

[70] David Wagner and Paolo Soto. Mimicry attacks on

host-based intrusion detection systems. In ACM

Conference on Computer and Communications Security,

pages 255–264, 2002.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying

Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.

Neural cleanse: Identifying and mitigating backdoor

attacks in neural networks. In IEEE Symposium on

Security and Privacy, 2019.

[72] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo.

Anomalous payload-based worm detection and signature

generation. In International Workshop on Recent

Advances in Intrusion Detection, pages 227–246.

Springer, 2005.

[73] David Warde-Farley, Ian Goodfellow, T. Hazan, G. Pa-

pandreou, and D. Tarlow. Adversarial perturbations of

deep neural networks. In Perturbations, Optimization,

and Statistics, pages 1–32. 2016.

[74] Weilin Xu, David Evans, and Yanjun Qi. Feature

Squeezing: Detecting Adversarial Examples in Deep

Neural Networks. In Network and Distributed Systems

Security Symposium, 2018.

[75] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,

and Dawn Song. Neural Network-based Graph

Embedding for Cross-Platform Binary Code Similar-

ity Detection. ACM Conference on Computer and

Communications Security, 2017.

[76] Mahmood Yousefi-Azar, Vijay Varadharajan, Len

Hamey, and Uday Tupakula. Autoencoder-based feature

learning for cyber security applications. In International

Joint Conference on Neural Networks (IJCNN), pages

3854–3861. IEEE, 2017.

[77] Kim Zetter. Researchers easily trick cylance’s

ai-based antivirus into thinking malware is ’good-

ware’. https://www.vice.com/en_us/article/

9kxp83/researchers-easily-trick-cylances-

ai-based-antivirus-into-thinking-malware-

is-goodware, Jul 2019.

Appendix A

A.1 Evaluation 1

Hands-on Evaluation. We asked a malware analyst with

reverse engineering experience to use DEEPREFLECT on a

malware which he has analyzed in the past (Mikey). Of the

15 functions which our tool identified in Mikey, the analyst

found that there were 13 TPs, and 2 FPs. He noted that

DEEPREFLECT identified an interesting component, which

he had missed and that the two FPs were placed at the bottom

third of the component’s priority rankings.

Figure 6: Command and Control: Ingress Tool Transfer. The

malware accesses a URL via InternetOpenUrlA(), creates a file

via CreateFileA() and writes data received from the connection

to the file via InternetReadFile() and WriteFile().

Figure 7: Defense Evasion: Deobfuscate/Decode Files or In-

formation. This function makes many calls to internal functions

(bolded) which contain complex bitwise operations on data (similar

to that of Figure 9). These complex operations exhibit deobfuscation

behavior. After calling these functions, it writes the decoded data

to a file via CreateFileA() and WriteFile().

Figure 8: Discovery: File and Directory Discovery. This function

searches for various files with specific extensions (i.e., doc, jpg, etc.).

It then copies those files to a separate location. This behavior could

be a setup for additional malicious behaviors like data exfiltration

or ransom.

A.2 Evaluation 2

Most benign functionalities we discovered were memory

allocation, loading a library, loading data from the process

file’s resources section, terminating a process (without

context), etc. What an analyst labels as malicious can be

subjective and relies on their experience and ability to match

it with descriptions like those in MITRE ATT&CK.

https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware
https://www.vice.com/en_us/article/9kxp83/researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-malware-is-goodware

Discovery 59 Defense Evasion 17 Privilege Escalation 4 Execution 11 Command and Control 7

System Information Discovery 16 Deobfuscation/Decode Files or Information 11 Create or Modify System Process 2 Scheduled Task/Job 7 Application Layer Protocol 4

File and Directory Discovery 12 Modify Registry 4 Access Token Manipulation 1 Command and Scripting Interpreter 2 Ingress Tool Transfer 3

Application Window Discovery 9 Hide Artifacts 1 Process Injection 1 System Services 2

Query Registry 7 Virtualization/Sandbox Evasion 1

Virtualization/Sandbox Evasion 5

Process Discovery 4

System Time Discovery 3

Domain Trust Discovery 1

Software Discovery 1

System Network Connection Discovery 1

Persistence 2 Impact 2 Exfiltration 1 Collection 2

External Remote Services 1 Data Manipulation 1 Automated Exfiltration 1 Screen Capture 1

Unknown 1 Network Denial of Service 1

Table 3: The counts of MITRE ATT&CK categories and subcategories found by the analysts in §4.4.

Figure 9: Defense Evasion: Deobfuscate/Decode Files or Infor-

mation. This function performs various bitwise operations on data.

Complex logic like this could be construed as performing some

deobfuscation or decoding in an effort to hide data the malware

interprets or gathers.

Figure 10: Cluster size distribution on our malware dataset

using DEEPREFLECT. The x-axis is each cluster ID.

A.3 Evaluation 4

Novel Malware Families. We chose four well-known

malware families: zbot, gandcrypt, cosmicduke, and

wannacry. For zbot, before there were 22,433 clusters and af-

ter there were 22,470 clusters. Samples existed in 359 clusters,

4 of which were only zbot and the other 355 were mixed. On

average, the number of zbot samples in the uniform clusters

was 5.75 and the number in the mixed clusters was 1.49. That is,

there were 4 new concepts not originally in the old clusterings.

320 new clusters (which contained zbot) were identical to old

clusters. That is, 320 clusters (if labeled) would have provided

320 x 1.49 = 476.8 function labels automatically, leaving the an-

alyst to review the newer clusters (behaviors). There were cases

of 18 new clusters which only contained samples which were

old noise points. There were 187 new clusters which contained

old noise points. Finally, 17 new clusters which containedzobt

samples were split into two clusters (i.e., were not identical to

old clusters). Similar observations were made with the other

families. Notably, cosmicduke samples did not result in new

concepts (i.e., new clusters only composed of that family), and

a majority of the new clusters after adding wannacry were

composed of samples which were old noise points.

A.4 Evaluation 5

Obfuscation. First, we ran all five (plus the original source

code compiled with ollvm with no obfuscations enabled)

through DEEPREFLECT to observe the functions it identified

using the threshold chosen for clustering. Our original, unob-

fuscated sample had 158 functions highlighted, A had 118, B

had 156, C had 138, D had 118, and E had 137. Instead of man-

ually examining 825 functions, we chose a random 10% from

each sample to label (we chose 10% because it would ensure

that we would have enough statistical significance to rely on

our results – we identified 42% benign and 57% malicious with

a margin-of-error of 11%). Our unobfuscated sample had 12

benign functions and 4 malicious functions highlighted. Our

ground-truth labeling was stricter than our labeling for our eval-

uation set, and 7 out of the 12 benign functions could have been

labeled by MITRE. A had 5 benign and 7 malicious functions.

However, 2 out of the 5 benign functions could be described by

MITRE.Bhad 10 benign and 6 malicious functions. However,3

out of the 10 benign functions could be described by MITRE. C

had 4 benign and 10 malicious functions, however 2 out of the 4

benign functions could be described by MITRE. D had 2 benign

and 10 malicious functions. None of the benign functions could

be described by MITRE. Finally, E had 3 benign and 11 mali-

cious functions. However, 1 of the 3 benign functions could be

described by MITRE. Lastly, we clustered the highlighted func-

tions to observe the effect they have on the other functions. We

hypothesized two outcomes: (1) the obfuscated functions look

so obscure that they get labeled as noise points, or (2) the obfus-

cated functions look uniformly obscure, so they get clustered

under one large cluster. However, we saw neither of these cases.

	Introduction
	Scope & Overview
	Motivation
	Proposed Solution
	Threat Model
	Research Goals

	Design
	Overview
	RoI Detection
	Features
	Model

	RoI Annotation
	Clustering Features
	Clustering Model

	Deployment

	Evaluation
	Dataset
	Model Setup
	Evaluation 1 – Reliability
	Baseline Models
	Ground-Truth Dataset
	Results

	Evaluation 2 – Cohesiveness
	Experiment Setup
	Results - Cluster Quality

	Evaluation 3 – Focus
	Evaluation 4 – Insight
	Evaluation 5 – Robustness

	Discussion
	Limitations

	Related Works
	Conclusion
	Acknowledgments
	
	Evaluation 1
	Evaluation 2
	Evaluation 4
	Evaluation 5

