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ABSTRACT 

 

Malware is one of the major threats in the cyber space today.  It is estimated that over 400,000 new samples1 are being 

introduced to the world every day.   To defend against these evolving advanced persistent threats (APTs), there is a 

need for an automatic, scalable, and secure analysis capability.  Lockheed Martin is leveraging Georgia Tech’s 

technical expertise in malware behavior analysis capability, and coupling it with cyber simulation to support cyber 

resiliency analysis and risk assessment. 

 

This paper will describe an approach on how a dynamic malware analysis capability can help design a system with 

better cyber resiliency against existing and emerging advanced persistent threats (APT).  In general, malware will 

remain dormant until it is triggered by specific computing or network conditions or events.  Hence, malware analysis 

framework, like Georgia Tech’s, needs to offer a flexible environment to evaluate a plethora of malware.  Most current 

analysis frameworks cannot segregate the malware traffic in the test network environment; the analysts must decide 

to isolate, or to let the malware traffic pass through the security controls while letting the malware exhibit their 

behavior.  The dynamic malware analyzer solution from Georgia Tech leverages both static and dynamic code 

analyses, symbolic execution techniques to examine the interactions between the malware and its command & control 

(C2) server so that malware can exhibit its intended behaviors in the native environment.  By coupling this capability 

with a cyber simulation, a company like Lockheed Martin’s cyber team can develop specific remedies more quickly 

against the threats given the detailed nature of the malware analysis.  Additionally, with a simulation environment, 

the cyber team can also test and evaluate their “what-if” cyber defensive postures relative to zero-day threats that have 

not been launched in the real world.  Ultimately, this will enhance the system survivability and resiliency. 
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INTRODUCTION  

 

Cyber defenders are always in a disadvantage position.  There are more malware today than remedies to address them 

at the moment; and this is only to get worse as the rate in which malware is being released simply outpaces the rate of 

malware addressed.  To understand why malware analysts are behind the curve, one needs to recognize a few 

challenges with respect to the malware analysis process itself.  First, the effectiveness of existing malware analysis 

frameworks relies on specific conditions that need to be met during the analysis phase. That is, malware will only 

unfold their intended malicious behaviors only when the appropriate triggering conditions (computing or networking 

environments) are present. For instance, malware may rely on a command and control (C&C) server, which may be 

dead at the time of analysis; or an advanced persistent threat (APT) may target specific environments, such as industrial 

control systems (ICS) or Internet of things (IoT) devices, and will not trigger otherwise. In general, it is important to 

automatically collect and examine triggering conditions with cutting-edge analysis techniques to deal with the high 

volume of new malware. This automated analysis should assist human experts in precisely and efficiently 

understanding hidden malware behaviors. Given the current triggering conditions in modern malware, existing 

analysis frameworks struggle to analyze the hidden behaviors of malware. 

 

The second challenge to malware analysis is the lack of methods that researchers could collaborate and share data.  As 

the number and complexity of malware increase, the cost of manual analysis increases exponentially.  Not only manual 

analysis is time consuming, but it also requires trained experts and the process itself is prone to human error.  Although 

anti-virus (AV) companies release analysis and threat reports, the data they share is either artifacts (e.g., malware 

sample files) or open-ended reports that analysts cannot directly utilize for further analysis. Even when the reports are 

publicly released, analysts have to go through the daunting effort of reconstructing the analysis environment before 

delving further. 

 

Third, existing frameworks suffer from inherent compromises between safety and data richness. For example, 

executing the malware in a real device without proper confinement (e.g., sandboxing) will fail to contain the attack, 

while monitoring or emulating the execution environment can trigger anti-analysis countermeasures (e.g., 

virtualization detection) in the sample.  On the network side, the analysis framework cannot simply block the traffic 

from the malware because it might need network connectivity to unfold its malicious behavior. The analyst must 

decide whether to isolate or allow traffic to pass through the security perimeter to contain the attack while letting the 

malware exhibit its behaviors. 
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To overcome these limitations, a scalable, shareable and secure dynamic malware analysis framework (DMAF) was 

developed to support a collaborative experimentation. In the following sections, we describe the components and the 

properties of this framework: 

 

• An automated system to examine and collect triggering conditions for malware using a cutting-edge 
analysis engine: a) Static and dynamic analysis to understand malware, and b) hybrid (symbolic and 
concolic execution) to automatically collect and examine triggering conditions.  

• A reproducible experiment environment for malware analysis: a) Based on triggering conditions, 
generating masqueraded C&C server logic, and b) setting up network topology and file system 
requirements. 

• Neutralization of the attacks in the malware using: a) binary re-writing to cut-off the core malicious logic 
and anti-analysis logic, b) automated and active containment of the network stack, and c) the careful 
isolation of the lab environment from the Internet. 

• Shareable malware analysis environment: a) The entire analysis environment can be shared including not 
only pcap file, but also system call/API traces, and instruction traces for fine-grained analysis and b) The 
shared data allows analysts to efficiently resolve issues with others. 

• A convenient and accessible interface between the framework and the malware analyst: a) empowering 
the malware analyst using automated tools, b) boosting the analysis with useful automation tools. 

 

In this white paper, we explore the architecture of this DMAF framework, its modules and explain the benefits of this 

framework through a malware analysis use case. 
 

 

ARCHITECTURE OVERVIEW 

 

The DMAF framework provides an environment that transform the malware into an analyzable format so that 

researchers can concisely analyze the malware, and extract the result data of analysis in a shareable format.  By 

leveraging cutting edge technologies, researchers can now investigate the core logic of the malware to find triggering 

conditions.  With this crucial information, one can replicate a computing environment that makes the malware into 

thinking that it is communicating with a real Command & Control (C2) server.  As a result, the malware’s intended 

behaviors would be exhibited and studied.  The Figure below shows how a malware being spoofed in a lab 

environment that matches the trigger conditions. 

 

 
 

Fig. 1. A Malware Being Spoofed into Communicating with a Fake C&C Server 

The DMAF consists of three main phases: preprocessing, analysis, and postprocessing. The preprocessing phase 

handles detection of features that thwart in-depth analysis of the malware and elimination of the obstacles to transform 

the given malware into an analyzable format. Also, the fuzzing feeder component automatically searches the network 

pcap files of the given malware in a malware analysis database, investigates the pcap files to extract C&C related 
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packets in a best-effort manner. In the analysis phase, each component performs automated analysis to trigger 

conditions. As such, both static analysis and dynamic analysis generate required outputs to run the automatic symbolic 

execution with hybrid engines.  Each component in this process iteratively interact with each other and examine 

possible triggering conditions. In the postprocessing phase, a secure runtime environment is constructed by leveraging 

the known triggering conditions from the previous steps.  With this environment, malware researchers can perform 

repeatable, shareable experiment to concisely investigate malware behaviors, and generates data in network level, file 

I/O level, and even instruction-level that supported by the latest hardware feature.  All data is generated in a shareable 

format, and the entire experiment process is repeatable—based on the verified trigger conditions. At the end of three 

phases, the analyst can utilize the outputs from DMAF to build reliable and highly effective protection mechanism for 

his/her infrastructure with intrusion detection system (IDS)/intrusion protection system (IPS) rules 

 

 

 

Fig. 2. Dynamic Malware Analysis Framework (DMAF) 

Security is paramount in any given cyber lab environment; any possibility of contamination on the core infrastructure 

should be suppressed and eliminated.  This proposed framework provides a compartmented environment to ensure 

safe handling of malware during an experiment.  For example, the virtual hosts such as the virtual machine (VM) that 

runs malware, the virtual DNS server, and the virtual C&C servers are isolated as separate VMs. Additionally, the 

network is also isolated per virtual host. An autonomous firewall proxy monitors the network traffic among the virtual 

hosts and determines whether to allow the traffic to the Internet, block the traffic, or redirect the network traffic to 

internal virtual hosts to keep the malware live in the runtime environment. 

 

 

PRE-PROCESSING 

 

Over the past couple of decades, researchers have invented numerous forms of static analysis to identify malicious 

software. In response, malware developers obfuscate their code to make static analysis difficult and ineffective. 

Specifically, most malware samples rely on a technique known as packing to hide the malware’s core functionality.  

 

In the DMAF system, the team employs the industry best practices for “unpacking” malware samples so the code 

could be revealed.  The team runs both specialized and generic “unpackers”; specialized unpackers are tailored made 

for handling commonly reused packers whereas generic packers tend to be slower and less accurate2.  On the other 

hand, a generic “unpacker” typically works on all packers (although less accurate); it is also harder for malware to 

detect the presence of this type of “unpacker” because the monitoring and code extraction happens in a hypervisor 

running at a higher privilege level than the malware’s sandbox. 

                                                           
2 For example, if the packer never unpacks a portion of code, the generic unpacker will not recover it 
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The other important step in pre-processing is the packet capture (pcap) analysis.  Here, the team leverages a large 

malware corpus to generate input for the fuzzing machine. The goal is for every malware family, to have a reference 

(which we refer to as “dictionary”) about how the payloads of the network traffic that it receives and send, how the 

structure looks like, which are the stable parts (remains the same across binaries of the same family, and which are 

the variable parts (keep changing). 

 

In this DMAF environment, pcaps are run on a daily basis and packets are pre-processed to extract the payloads via 

BRO and encrypted payload are filtered.  The team would need to examine the encrypted payload for the randomness 

of the payload characters. For those payloads that are deemed valid, the team further processes them, to extract a 

“dictionary” like input to the Fuzzing Feeder. 

 

The last step of Pre-Processing is Intermediate Representation (IR) lifting.  IR is the data structure or code used 

internally by a compiler or virtual machine to represent source code. IR is appealing for architecture interoperability 

reasons; a given malware might be native to specific computing architectures, so translating the malware binary code 

to lower level virtual machine (LLVM) bitcode would be essential.  The following figure below is the process of IR 

lifting for a malware sample. 

 

 

Fig. 3. Malware Code Translation via IR Process 

   

ANALYSIS 

 

Static analysis is a technique which gathers information about the binary without execution. Once binary code is lifted 

to an IR, one can use it on different architectures.  In this phase, light-weight static analysis methods are applied, and 

all the complex analyses are handled during concolic and hybrid executions.  

 

First, heuristics are applied to intraprocedural Control Flow Graph (CFG) to determine control flow information and 

data dependency information. Using that information, it is possible to create a set of pairs of possible start points and 

target malicious activities. For example, some candidate variables for the command inputs can be the network-related 

functions where the malware initiates the first dialog by reading an input from C&C server or sending a message to 

C&C server.  

 

“Concolic” execution is, by definition, a combination of CONCrete and symbOLIC executions. Concrete execution 

generally means running a program on a specific set of inputs, and hence, it is insufficient to rely on concrete execution 

alone.  Symbolic execution allows us to execute a program through all possible execution paths, thus achieving all 

possible path conditions3. The limitation of symbolic execution is scalability.  For a simple program, symbolic 

execution is often preferred.  However, with a large program, the number of possible paths grows exponentially.   

 

In concrete execution, since the inputs are set to specific values, the behavior we observe is valid only for those 

particular values.  Unlike concrete execution, concolic execution would yield a more generalized input space.  

Concolic execution can represent all the possible runs for a path. On the contrary, concrete execution can only produce 

exact values for that specific runs. While performing concolic execution, instructions are emulated, and their resulting 

effects reflect the symbolic environment to imitate concrete execution.   

 

Hybrid analysis involves orchestrating static analysis, concolic execution, and dynamically instrumentation execution. 

In other words, the hybrid analysis method supports concolic execution while running the binaries in the real 

                                                           
3 A path condition is the set of logical constraints that takes us to a specific point in the execution 
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environment. Concolic execution engines cannot model the entire system. Also, lifting binary into IR is not always 

possible. For example, for the packed binaries, we cannot use any static analysis or concolic execution techniques. 

Even if malware is not packed, the lifted IR may not represent the binary with 100% accuracy. The inaccuracy in 

lifting affects the accuracy of CFG, instruction, function boundary, etc. Moreover, malware has additional drawbacks 

on concolic execution. They can be packed, obfuscated or perform cryptographic computations. Modeling the 

environment and trying to emulate the concrete execution are not enough to overcome the drawbacks of 

aforementioned symbolic execution.  

 

Fig. 4. DMAF Hybrid Analysis Architecture Diagram 

While the malware binary is being executed, we should monitor, introspect and even change the information held by 

the application to manipulate the malware runtime behavior. To achieve this, some of industry Dynamic Binary 

Instrumentation (DBI) standard tools like DynamoRIO, Intel PIN or Frida are being used to dynamically execute 

malware and change their behavior. These tools provide the ability to trace instructions, memory, and CPU flags and 

registers which all have concrete values. As a result, we can get the information via DBI and feed these concrete values 

into the concolic execution engines, make only the point of interest as symbolic variables such as a network input 

which could carry the triggering value for a given behavior. This way, the number of the symbolic variables in the 

concolic execution engine can be reduced. This may reduce the path explosion and constraint solving problems. 

Another benefit is that we can always run heavy computational functions in concrete execution which will be faster 

than constraint solving. As shown in the Figure 1, the analysis module includes static analysis, dynamic analysis and 

symbolic execution iteratively feeding each other. 

 

The above figure shows orchestrating analysis and execution methods.  First, for any given malware, the DMAF 

framework tries to gather static information.  Upon detecting the possible malicious paths or any pair of the start 

location and the target location, the information will be transferred into the concolic execution engine.  In the presence 

of control flow information, the DMAF’s concolic execution framework will use directed symbolic execution.  

Otherwise, the concolic execution engine will follow the path exploration technique. 

 

Second, when the concolic execution techniques find feasible paths and cannot determine what the input would be 

due to lacking enough constraints, then hybrid analysis will run the malware using dynamic instrumentation tools 

powered by the possible set of inputs that should be fed to the running malware by the instrumentation tool.  

 

Third, an iterative execution approach is applied to the malware sample when the instrumentation tool cannot proceed 

further with the information gathered from concolic execution module.  In this phase, the concretized memory and the 

context are transferred into the concrete execution environment to make symbolic space smaller. Hence, one can gain 

some accuracy and performance due to reduced symbolic space which makes constraint solving faster. Again, 

whenever the concolic execution module cannot determine a result, we follow the second and third steps iteratively. 

This iterative process will help both instrumentation and concolic execution. First, concrete execution doesn’t have to 

be performed to increase code coverage. Second, concolic execution will suffer less because of reduced space of 

symbolic formulae and captured unsupported environment variables/functions during concrete execution 
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POST-PROCESSING 

 

The primary objective of the postprocessing phase is to guarantee a secure, repeatable and shareable dynamic malware 

analysis while not only letting malware run live on the environment, but also feeding the malware sample with 

triggering conditions that are collected from the analysis phase. After the analyst performs deep dynamic malware 

analysis, DMAF generates execution traces in network-level and system-level in shareable format. 

 

The postprocessing phase relies on the secure runtime environment using Docker, which is the latest operating-system-

level virtualization and containerization technology. With triggering conditions, DMAF generates a fake C&C server, 

a virtual DNS server and a C&C client that is running the given malware sample. All instances are generated as virtual 

host by leveraging Docker image and Docker container. Docker system allows an efficient way to build virtual hosts 

and network topology and to ensure isolated network environment and an isolation layer on the host machine. With 

the Docker system, DMAF provides the secure and isolated environment aimed for repeatable malware analysis 

purposes. 

 

The figures below show the results of the host and network level tracing of a given malware sample.  The artifacts 

(including commands/API calls, host/network tracing) produced can be shared with other cyber analysts so the 

community can better understand a given malware and its behaviors within a computing environment.  Armed with 

this information, cyber analysts can test different mitigation techniques to identify, suppress or eliminate the malware 

through experimentation.  Figure 5 and Figure 6 clearly demonstrate the validity of this process and the value of 

DMAF.   

 

 

Fig. 5. Host Tracing (Sample Results) 
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Fig. 6. Network Tracing (Sample Results) 

 

CYBER SIMULATION 

 

One of the main challenges in applying traditional simulation techniques to cyber is threat modeling.  In general, it is 

not hard to model the information system network you are trying to protect.  Network topology data and 

user/application traffic profiles should be available from the network administrators; the adversary and their chosen 

attack vectors might be a little more difficult to model.  However, Red Teaming or Cyber Table Top (CTT) can 

typically provide some insights, and artifacts can then be fed into a cyber simulation environment.  Threat modeling 

might be the longest pole in the tent since cyber threats, by nature, are very dynamic.  This is especially the case for 

new malware.  Zero Day threats are, by definition, new threats that have not been released to the wild, so there is no 

data on them.  As a result, anti-virus and anti-malware solutions are not effective to identify and deter these Zero-Day 

threats as threat definition database are not populated with their information yet.  Without having an analyzer 

framework, it is difficult to understand what the malware are doing to the information systems; hence, it would be 

almost impossible to model these new cyber threats and evaluate cyber defensive solutions against them. 

 

The other challenge is security.  As a policy, defense contractors are not allowed to introduce real malware to the 

tactical systems for fear of contamination.  Hence, there is considerable difficulties to assess how tactical systems are 

going to perform in a contested and congested environment where cyber threats are prevalent in the operational 

environment.  Predicting their cyber resiliency would also be near impossible if malware and their impacts are not 

clearly understood.  This drives the need for cyber simulations and their capability to, at least, provide insights on how 

tactical system can perform in these challenging hostile environments. Cyber Attack Network Simulation (CANS) is 

an example of such tool.  The objective of CANS is to enable the study of cyber events against a model of a planned 

or operational information system.  For this malware analysis case study, CANS is used to simulate the execution and 

effect of cyber incidents in a modeled network environment, mimicking the behaviors of an intrusion (or an exploit) 

while demonstrating cyber impacts on the mission system, hardware, and software applications.  The adversary effects 

on mission functionality are represented in the simulation environment, and remediation actions could be tested and 

evaluated by cyber defenders.  Fig 7 below shows a high-level system architecture overview of CANS. 
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Fig. 7. CANS System Architecture Overview 

To support playback and post-processing analysis, a cyber simulation needs to have attack scripting capability.  An 

attack script might be a common vulnerability exposure (CVE) from a vulnerability database, or a malware (or 

malicious code) downloaded onto a network host node during a phishing attack launched by the cyber attacker.  Once 

the CVEs or malware are defined in the attack script, the cyber simulation can be executed to produce the outcome.  

To support experimentation, end users can come up with the defensive strategies to mitigate and minimize the cyber 

risks associated with the chose attack patterns.  Because each scenario run is tied to a random number, a specific 

iteration out of a set of Monte Carlo runs can be replicated at a later time if the run requires additional investigation.   

 

While modeling a cyber threat through the use of CVE is useful to a cyber simulation like CANS at a high level, it is 

preferable to model a specific malware with great details.  The aforementioned DMAF fills this void; not only a cyber 

simulation can now model a real-world malware without introducing live malicious source code to a tactical 

environment, it allows decision makers to assess cyber impacts at a mission level.  Operators can be trained in realistic 

operational environment, so they know how to respond during a cyber event.  Cyber defenders can also use this 

simulation environment to plan ahead, so the overall cyber resiliency level can be improved. 

 

As a case study in 2018, the team leveraged DMAF capability and extracted a new zero-day threat so that cyber 

analysts could use CANS to come up with a better strategy to mitigate the effects of a malicious malware.  At the 

time, there was a little-known malware called Mnubot4.  The team obtained a sample of Mnubot from a threat database 

library and started to analyze its behaviors by using DMAF.  The malware went through the unpacking and IR Lifting 

pre-processes outlined in Figure 2.  The team then executed both static and dynamic analysis on the malware sample.  

Concolic execution provided insights on the Mnubot source code so that the cyber analysts can better understand the 

triggering conditions.  For most malware, a C&C server is typically used to communicate with the malware and send 

specific commands to be performed.  What is unique about Mnubot is that it does not interact with a C&C server 

directly.  Instead, it relies on a Microsoft SQL server and uses it as a conduit.  By wrapping malware commands in 

seemingly normal SQL traffic makes it hard to detect because anti-virus and anti-malware solutions simply cannot 

distinguish it from legitimate activities.  Figure 8 & 9 below show snapshots of Mnubot and its SQL server 

communications captured by the aforementioned pcap and network/host tracing process.  Like any other Remote 

Access Trojan (RAT), Mnubot needs to receive commands from the server. To do so, it has to query the Microsoft 

SQL database server for a new command periodically.  For example, the highlighted blocks in Figure 8 shows various 

SQL function calls to be executed on the infected machine.  As seen in Figure 9, Mnubot provides SQL server details—

including server address, port, username and a password, all of which are hardcoded inside the sample.  By examining 

the API calls and system commands, DMAF provides a detailed play-by-play description of the malware behaviors 

through control flow analyses.  With this insight, the CAN team replicated the effects of these commands in a 

simulation environment by mapping them to the common vulnerability exposures (CVEs) and attack patterns.  This 

was all done without the actual Mnubot malware being deployed to the tactical environment and risk contamination 

(or worse, violate any information system security policy).   

                                                           
4 Discovered by IBM researchers in 2018, Mubot was one of the zero-day threats captured and identified. 
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Fig. 8. Mnubot Malware (Sample) SQL Commands 

  

 

Fig. 9. Commands to Access the Mubot C&C Server 

Armed with this knowledge, the cyber team can now try different IDS/IPS techniques to mitigate the effects of the 

commands executed by this Mnubot malware while ensuring the original intended operations can still be performed 

by the tactical mission systems.  

 

 

FUTURE WORK 

 

This paper covers current progress in cyber modeling & simulation (M&S) to incorporate effects of the real malware  

threats.  Our minimum viable prototype (MVP) demonstrates the value of this system by integrating and testing 

different cyber solutions on a potential tactical system environment.  Thus far, this process is still very labor intensive 

as automation cannot be applied to expert system yet.  The goal is to leverage Machine Learning (ML) and Deep 
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Learning (DL) techniques to quickly find the most optimum cyber solutions without this lengthy operations analysis 

process.  Lockheed Martin is currently partnering with Massachusetts Institute of Technology (MIT) and 

experimenting the use of convolutional neural network (CNN) based Deep Learning techniques.  MIT’s expertise in 

ML and DL helps apply these cutting-edge technologies to cyber defenses.  Collaboratively, the team has studied 

Google’s TensorFlow and Facebook’s PyTorch and determined a set of features that should be used to drive such 

optimum solution(s) in response to a given set of threats.  

 

 

SUMMARY 

 

This paper demonstrated how DMAF framework has been utilized to perform malware analysis on a real-world zero-

day malware; by leveraging various cutting-edge techniques, the team has unveiled intricate malware behaviors by 

efficiently analyzing the malware (through static and dynamic code analysis) and its C&C server (through a SQL 

server).  Ultimately, these behaviors are captured and eventually modeled in a cyber simulation environment for cyber 

risk assessment and system resiliency analysis. The progress described in this report indicates the approach is effective 

and robust for understanding malware.  By coupling this malware analysis capability with a cyber simulation like 

CANS, cyber analysts can use this capability to assess cyber risks and boost cyber resiliency.  Mission planning and 

cyber operator training activities are also getting benefits from this approach as CMF and CPT can now anticipate 

certain threat scenario(s) and continue their mission execution while a cyber event is taking place. 
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